MATHEMATICAL TRIPOS Part IB

Wednesday 6 June 2001 1.30 to 4.30

PAPER 1

Before you begin read these instructions carefully.

Each question in Section II carries twice the credit of each question in Section I. Candidates may attempt at most **four** questions in Section I and at most **six** questions from Section II.

Complete answers are preferred to fragments.

Write on one side of the paper only and begin each answer on a separate sheet.

Write legibly; otherwise, you place yourself at a grave disadvantage.

At the end of the examination:

Answers must be tied up in separate bundles, marked A, B, \ldots, H according to the letter affixed to each question, and a blue cover sheet must be attached to each bundle.

A green master cover sheet listing all the questions attempted must be completed.

It is essential that every cover sheet bear the candidate's examination number and desk number.

SECTION I

1A Analysis II

Define uniform continuity for functions defined on a (bounded or unbounded) interval in $\mathbb R.$

Is it true that a real function defined and uniformly continuous on $\left[0,1\right]$ is necessarily bounded?

Is it true that a real function defined and with a bounded derivative on $[1, \infty)$ is necessarily uniformly continuous there?

Which of the following functions are uniformly continuous on $[1,\infty)$:

(i) x^2 ;

(ii) $\sin(x^2)$;

(iii) $\frac{\sin x}{x}$?

Justify your answers.

2H Methods

The even function f(x) has the Fourier cosine series

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos nx$$

in the interval $-\pi \leq x \leq \pi$. Show that

$$\frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx = \frac{1}{2}a_0^2 + \sum_{n=1}^{\infty} a_n^2.$$

Find the Fourier cosine series of x^2 in the same interval, and show that

$$\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}.$$

3D Statistics

Let X_1, \ldots, X_n be independent, identically distributed $N(\mu, \mu^2)$ random variables, $\mu > 0$.

Find a two-dimensional sufficient statistic for $\mu,$ quoting carefully, without proof, any result you use.

What is the maximum likelihood estimator of μ ?

4B Geometry

Write down the Riemannian metric on the disc model Δ of the hyperbolic plane. What are the geodesics passing through the origin? Show that the hyperbolic circle of radius ρ centred on the origin is just the Euclidean circle centred on the origin with Euclidean radius $\tanh(\rho/2)$.

Write down an isometry between the upper half-plane model H of the hyperbolic plane and the disc model Δ , under which $i \in H$ corresponds to $0 \in \Delta$. Show that the hyperbolic circle of radius ρ centred on i in H is a Euclidean circle with centre $i \cosh \rho$ and of radius $\sinh \rho$.

5C Linear Mathematics

Determine for which values of $x \in \mathbb{C}$ the matrix

$$M = \begin{pmatrix} x & 1 & 1\\ 1-x & 0 & -1\\ 2 & 2x & 1 \end{pmatrix}$$

is invertible. Determine the rank of M as a function of x. Find the adjugate and hence the inverse of M for general x.

6G Fluid Dynamics

Determine the pressure at a depth z below the surface of a static fluid of density ρ subject to gravity g. A rigid body having volume V is fully submerged in such a fluid. Calculate the buoyancy force on the body.

An iceberg of uniform density ρ_I is observed to float with volume V_I protruding above a large static expanse of seawater of density ρ_w . What is the total volume of the iceberg?

[TURN OVER

7E Complex Methods

State the Cauchy integral formula.

Assuming that the function f(z) is analytic in the disc |z| < 1, prove that, for every 0 < r < 1, it is true that

$$\frac{d^n f(0)}{dz^n} = \frac{n!}{2\pi i} \int_{|\xi|=r} \frac{f(\xi)}{\xi^{n+1}} d\xi, \qquad n = 0, 1, \dots.$$

[Taylor's theorem may be used if clearly stated.]

8B Quadratic Mathematics

Let $q(x, y) = ax^2 + bxy + cy^2$ be a binary quadratic form with integer coefficients. Define what is meant by the *discriminant* d of q, and show that q is positive-definite if and only if a > 0 > d. Define what it means for the form q to be *reduced*. For any integer d < 0, we define the class number h(d) to be the number of positive-definite reduced binary quadratic forms (with integer coefficients) with discriminant d. Show that h(d) is always finite (for negative d). Find h(-39), and exhibit the corresponding reduced forms.

9F Quantum Mechanics

A quantum mechanical particle of mass m and energy E encounters a potential step,

$$V(x) = \begin{cases} 0, & x < 0, \\ V_0, & x \ge 0. \end{cases}$$

Calculate the probability P that the particle is reflected in the case $E > V_0$.

If V_0 is positive, what is the limiting value of P when E tends to V_0 ? If V_0 is negative, what is the limiting value of P as V_0 tends to $-\infty$ for fixed E?

SECTION II

10A Analysis II

Show that each of the functions below is a metric on the set of functions $x(t) \in C[a,b]$:

$$d_1(x,y) = \sup_{t \in [a,b]} |x(t) - y(t)|,$$

$$d_2(x,y) = \left\{ \int_a^b |x(t) - y(t)|^2 dt \right\}^{1/2}.$$

Is the space complete in the d_1 metric? Justify your answer.

Show that the set of functions

$$x_n(t) = \begin{cases} 0, & -1 \le t < 0\\ nt, & 0 \le t < 1/n\\ 1, & 1/n \le t \le 1 \end{cases}$$

is a Cauchy sequence with respect to the d_2 metric on C[-1, 1], yet does not tend to a limit in the d_2 metric in this space. Hence, deduce that this space is not complete in the d_2 metric.

11H Methods

Use the substitution $y = x^p$ to find the general solution of

$$\mathcal{L}_x y \equiv \frac{d^2 y}{dx^2} - \frac{2}{x^2} y = 0.$$

Find the Green's function $G(x,\xi)$, $0 < \xi < \infty$, which satisfies

$$\mathcal{L}_x G(x,\xi) = \delta(x-\xi)$$

for x > 0, subject to the boundary conditions $G(x,\xi) \to 0$ as $x \to 0$ and as $x \to \infty$, for each fixed ξ .

Hence, find the solution of the equation

$$\mathcal{L}_x y = \begin{cases} 1, & 0 \le x < 1, \\ 0, & x > 1, \end{cases}$$

subject to the same boundary conditions.

Verify that both forms of your solution satisfy the appropriate equation and boundary conditions, and match at x = 1.

[TURN OVER

12D Statistics

What is a *simple hypothesis*? Define the terms *size* and *power* for a test of one simple hypothesis against another.

State, without proof, the Neyman–Pearson lemma.

Let X be a **single** random variable, with distribution F. Consider testing the null hypothesis $H_0: F$ is standard normal, N(0, 1), against the alternative hypothesis $H_1: F$ is double exponential, with density $\frac{1}{4}e^{-|x|/2}, x \in \mathbb{R}$.

Find the test of size $\alpha, \alpha < \frac{1}{4}$, which maximises power, and show that the power is $e^{-t/2}$, where $\Phi(t) = 1 - \alpha/2$ and Φ is the distribution function of N(0, 1).

[*Hint: if* $X \sim N(0, 1), P(|X| > 1) = 0.3174.$]

13B Geometry

Describe geometrically the stereographic projection map ϕ from the unit sphere S^2 to the extended complex plane $\mathbb{C}_{\infty} = \mathbb{C} \cup \infty$, and find a formula for ϕ . Show that any rotation of S^2 about the z-axis corresponds to a Möbius transformation of \mathbb{C}_{∞} . You are given that the rotation of S^2 defined by the matrix

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$

corresponds under ϕ to a Möbius transformation of \mathbb{C}_{∞} ; deduce that any rotation of S^2 about the *x*-axis also corresponds to a Möbius transformation.

Suppose now that $u, v \in \mathbb{C}$ correspond under ϕ to distinct points $P, Q \in S^2$, and let d denote the angular distance from P to Q on S^2 . Show that $-\tan^2(d/2)$ is the cross-ratio of the points $u, v, -1/\bar{u}, -1/\bar{v}$, taken in some order (which you should specify). [You may assume that the cross-ratio is invariant under Möbius transformations.]

14C Linear Mathematics

(a) Find a matrix M over \mathbb{C} with both minimal polynomial and characteristic polynomial equal to $(x-2)^3(x+1)^2$. Furthermore find two matrices M_1 and M_2 over \mathbb{C} which have the same characteristic polynomial, $(x-3)^5(x-1)^2$, and the same minimal polynomial, $(x-3)^2(x-1)^2$, but which are not conjugate to one another. Is it possible to find a third such matrix, M_3 , neither conjugate to M_1 nor to M_2 ? Justify your answer.

(b) Suppose A is an $n \times n$ matrix over \mathbb{R} which has minimal polynomial of the form $(x - \lambda_1)(x - \lambda_2)$ for distinct roots $\lambda_1 \neq \lambda_2$ in \mathbb{R} . Show that the vector space $V = \mathbb{R}^n$ on which A defines an endomorphism $\alpha : V \to V$ decomposes as a direct sum into $V = \ker(\alpha - \lambda_1 \iota) \oplus \ker(\alpha - \lambda_2 \iota)$, where ι is the identity.

[*Hint: Express* $v \in V$ *in terms of* $(\alpha - \lambda_1 \iota)(v)$ *and* $(\alpha - \lambda_2 \iota)(v)$.]

Now suppose that A has minimal polynomial $(x-\lambda_1)(x-\lambda_2)\dots(x-\lambda_m)$ for distinct $\lambda_1,\dots,\lambda_m \in \mathbb{R}$. By induction or otherwise show that

$$V = \ker(\alpha - \lambda_1 \iota) \oplus \ker(\alpha - \lambda_2 \iota) \oplus \ldots \oplus \ker(\alpha - \lambda_m \iota).$$

Use this last statement to prove that an arbitrary matrix $A \in M_{n \times n}(\mathbb{R})$ is diagonalizable if and only if all roots of its minimal polynomial lie in \mathbb{R} and have multiplicity 1.

15G Fluid Dynamics

A fluid motion has velocity potential $\phi(x, y, t)$ given by

 $\phi = \epsilon y \cos\left(x - t\right)$

where ϵ is a constant. Find the corresponding velocity field $\mathbf{u}(x, y, t)$. Determine $\nabla \cdot \mathbf{u}$.

The time-average of a quantity $\psi(x, y, t)$ is defined as $\frac{1}{2\pi} \int_0^{2\pi} \psi(x, y, t) dt$.

Show that the time-average of this velocity field at every point (x, y) is zero.

Write down an expression for the fluid acceleration and find the time-average acceleration at (x, y).

Suppose now that $|\epsilon| \ll 1$. The material particle at (0,0) at time t = 0 is marked with dye. Write down equations for its subsequent motion and verify that its position (x, y) at time t > 0 is given (correct to terms of order ϵ^2) as

$$x = \epsilon^2 (\frac{1}{2}t - \frac{1}{4}\sin 2t),$$

$$y = \epsilon \sin t .$$

Deduce the time-average velocity of the dyed particle correct to this order.

[TURN OVER

16E Complex Methods

Let the function F be integrable for all real arguments x, such that

$$\int_{-\infty}^{\infty} |F(x)| dx < \infty \; ,$$

and assume that the series

$$f(\tau) = \sum_{n = -\infty}^{\infty} F(2n\pi + \tau)$$

converges uniformly for all $0 \leq \tau \leq 2\pi$.

Prove the Poisson summation formula

$$f(\tau) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \hat{F}(n) e^{in\tau},$$

where \hat{F} is the Fourier transform of F. [Hint: You may show that

$$\frac{1}{2\pi} \int_0^{2\pi} e^{-imx} f(x) dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-imx} F(x) dx$$

or, alternatively, prove that f is periodic and express its Fourier expansion coefficients explicitly in terms of \hat{F} .]

Letting $F(x) = e^{-|x|}$, use the Poisson summation formula to evaluate the sum

$$\sum_{n=-\infty}^{\infty} \frac{1}{1+n^2} \cdot$$

17B Quadratic Mathematics

Let ϕ be a symmetric bilinear form on a finite dimensional vector space V over a field k of characteristic $\neq 2$. Prove that the form ϕ may be diagonalized, and interpret the rank r of ϕ in terms of the resulting diagonal form.

For ϕ a symmetric bilinear form on a real vector space V of finite dimension n, define the signature σ of ϕ , proving that it is well-defined. A subspace U of V is called null if $\phi|_U \equiv 0$; show that V has a null subspace of dimension $n - \frac{1}{2}(r + |\sigma|)$, but no null subspace of higher dimension.

Consider now the quadratic form q on \mathbb{R}^5 given by

$$2(x_1x_2 + x_2x_3 + x_3x_4 + x_4x_5 + x_5x_1).$$

Write down the matrix A for the corresponding symmetric bilinear form, and calculate det A. Hence, or otherwise, find the rank and signature of q.

18F Quantum Mechanics

Consider a quantum-mechanical particle of mass m moving in a potential well,

$$V(x) = \begin{cases} 0, & -a < x < a, \\ \infty, & \text{elsewhere.} \end{cases}$$

(a) Verify that the set of normalised energy eigenfunctions are

$$\psi_n(x) = \sqrt{\frac{1}{a}} \sin\left(\frac{n\pi(x+a)}{2a}\right), \quad n = 1, 2, \dots,$$

and evaluate the corresponding energy eigenvalues E_n .

(b) At time t = 0 the wavefunction for the particle is only nonzero in the positive half of the well,

$$\psi(x) = \begin{cases} \sqrt{\frac{2}{a}} & \sin\left(\frac{\pi x}{a}\right), & 0 < x < a, \\ 0, & \text{elsewhere.} \end{cases}$$

Evaluate the expectation value of the energy, first using

$$\langle E\rangle = \int_{-a}^{a} \psi H \psi dx,$$

and secondly using

$$\langle E \rangle = \sum_{n} |a_n|^2 E_n,$$

where the a_n are the expansion coefficients in

$$\psi(x) = \sum_{n} a_n \psi_n(x).$$

Hence, show that

$$1 = \frac{1}{2} + \frac{8}{\pi^2} \sum_{p=0}^{\infty} \frac{(2p+1)^2}{[(2p+1)^2 - 4]^2} \cdot$$

END OF PAPER