
9 Operational Research

9.5 The Google PageRank Algorithm (5 units)

This project requires an understanding of the Part IB Markov Chains course. Familiarity with
Linear Algebra is desirable.

1 Introduction

PageRank is a link analysis algorithm, operating on a database of documents connected to
each other via directional hyperlinks. It was developed to measure the relative importance of
a webpage in the World Wide Web, and with minor variations has also been employed in the
context of assigning importance to academic journal publications.

Graph-theoretic terminology We will represent a collection of hyperlinked documents
(webpages, academic journals, etc.) as a directed graph G = (V,E), where V is the set of
documents {d1, . . . , dN} and the edge set E ⊆ V ×V can be represented by an N×N adjacency
matrix A, where Aij = 1 iff dj → di (i.e., iff (dj , di) ∈ E). The out-degree of a node i is the
number of outgoing edges di → dj . A node with out-degree 0 is called a dangling node. Multiple
edges can be incorporated by letting Aij = d when there are d edges j → i.

2 The PageRank algorithm

PageRank may be motivated as a voting system. Each webpage can distribute a total vote
of 1 to other webpages, and votes themselves are weighted according to the importance of the
respective voter, giving rise to the following recursion for the score wi of the ith webpage:

wi =
∑

j=1:N

Sijwj , where Sij =
Aij∑

q=1:N Aqj
and wi > 0. (1)

A normalisation constraint
∑

iwi = N is also employed, to ensure an average score of 1. More-
over, we assume that “everyone votes,” i.e., that there are no dangling nodes. We may interpret
S as the transition matrix of a Markov chain that describes the behaviour of a surfer who
chooses where to go next by picking one of the available outgoing links at random. Recursion
(1) then characterises the score vector w as an invariant measure for this Markov chain.

Question 1 Produce an adjacency matrix for which recursion (1) fails to converge
when initialised at w = (1, 1, . . . , 1) and iterated. Assume that everyone votes.

To avoid having to enforce assumptions on the edge structure of the document collection, we
may assume that the surfer occasionally gets bored following links and starts anew, selecting a
random webpage from V to visit next according to some “default” distribution π on V . This
is often referred to as damping. If we handle dangling nodes in a similar way, we obtain the
random surfer model of Figure 1.
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Random Surfer [(V,A), π, d]

At t = 0, choose a random webpage from V according to π.
At t > 0, if there are no outgoing links,

choose a random webpage from V according to π;
else

with probability d
choose an outgoing link uniformly at random among available links,

with probability (1− d)
choose a random webpage from V according to π.

Figure 1: Description of the random surfer model for user behaviour.

Question 2 Simulate 100 sample paths of the Markov chain of Figure 1 on the fol-
lowing example graph, with π uniform and d = 0.85:

A =


0 1 0 0
1 0 0 0
1 0 0 1
0 0 0 0

 . (2)

For the jth sample path, denote the average time spent on the kth node from the beginning

of that sample path until time t by µ
(k)
jt . For a fixed sample path of your choice, and for

each node, plot µ
(k)
jt against t. For each node, and for each value of t, compute the variance

of µ
(k)
jt over different sample paths and plot it against t.

Question 3 Modify (1) to incorporate damping and handle dangling nodes as de-
scribed above. Assuming that 1 > d > 0, and πi > 0 for all i, use standard Markov chain
results to establish that the recursion you have obtained

• has a unique solution p, such that p is a distribution (i.e.,
∑

i pi = 1, pi > 0) and pi
represents the average time the surfer spends visiting webpage i; and

• converges to p.

The PageRank scores are then given by w = Np.

Question 4 Write a procedure that implements PageRank with d = 0.85 and π uni-
form. Your procedure should take as input an adjacency matrix and a maximum number
of iterations, and output a column vector of PageRank scores.

• Test your procedure on A given in question 2, and compare with your results there.

• Construct an example for which node 1 has a larger number of both incoming and
outgoing links than node 2, but a smaller PageRank score.

Question 5 Write a procedure that generates a random adjacency matrix of size N ,
such that the out-degree of each node is an independent Poisson random variable with
mean k, and conditional on the sequence of out-degrees all graphs are equiprobable.

• Generate an example with N = 1000 and k = 100, and convince yourself that your
implementation of PageRank is correct by inspecting the eigenvectors of the modified
transition matrix. Carefully explain your reasoning. You may use the MATLAB
function eig.
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File citations.dat :
... ...

9408099 9204102
9408099 9211097
9408099 9402002
9408099 9402005

... ...

File articlejids.dat :
... ...

9204102 82
9204103 62
9205001 65
9205002 65

... ...

Figure 2: A few entries from the two files forming the citation dataset.

• What happens to the empirical distribution of scores as k decreases?

• Describe one aspect of this model that provides an unrealistic description of real-life
web networks.

3 Ranking academic journals.

Let us represent a collection of academic journals as a directed graph, letting Aij be equal to
the number of times an article published in journal j cited an article from journal i. We force
Aii = 0, disregarding citations within the same journal. The Eigenfactor (EF) score of each
journal is then computed by applying PageRank to the graph described, with d = 0.85 and the
following choice of default distribution π intended to represent journal size or popularity :

πi =
zi∑
i zi

, where zi is the number of articles in journal i in the given time period. (3)

Before the introduction of the EF score, the industry standard for ranking academic journals
was the Total Citations (TC) score, which in this representation is the in-degree of a node. To
separate journal prestige from journal size or popularity, the TC score is commonly reported
as an Impact Factor (IF), obtained by dividing the in-degree of node i by zi. By analogy, the
Article Influence (AI) score is obtained by dividing the EF score of a journal by zi.

3.1 Real data

The files citations.dat and articlejids.dat on the CATAM website contain citation data from
the Arxiv high energy physics theory section (also see Figure 2). Each article is represented
by a 7 digit identifier, leading zeros being omitted without risk of confusion. Each line of the
file citations.dat is of the form ‘[article i] [article j]’, and represents a citation from article i to
article j. In articlejids.dat, each article is assigned a journal identifier ranging from 1 to 272.

Question 6 Verify that the same set of articles appears in both files, and that each
article is assigned a unique journal identifier. Then retrieve the (multiple-edge) journal
adjacency matrix A, and the vector z of articles per journal. In MATLAB, files can be
loaded using the function load. The following functions might also be useful: isequal,
ismember, find, unique.

Following the introduction of EF alongside TC scores (and of AI alongside IF scores), a debate
ensued as to the relative merits of the two approaches. Central to this debate is the statistical
question of whether the two offer similar information.
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Question 7 On the basis of the citations dataset, discuss the question whether EF and
TC scores are practically indistinguishable. Your answer should consider

• the correlation ρEF,TC between EF and TC scores and

• the differences in journal ranking for each of the two scores.

Is the correlation ρAI,IF between AI and IF scores relevant to this question? If so, how?
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