
7 Mathematical Methods

7.5 Padé Approximants (8 units)

This project is essentially self-contained, though the Part II course Asymptotic Methods provides
background to Question 4.

1 Introduction

A Padé approximant is a rational function, i.e., a function expressed as a fraction whose numer-
ator and denominator are both polynomials, whose power series expansion agrees with a given
power series to the highest possible order.

The primary application of Padé approximants is to problems where it is possible to derive
the solution formally as a power series expansion in some parameter. The corresponding Padé
approximants often turn out to be much more useful than the power series itself (in a sense to
be explored in this project).

Given the power series

f(x) =
∞∑
k=0

ckx
k (1)

the [L,M ] Padé approximant RL,M (x) is defined by

RL,M (x) =

∑L
k=0 pkx

k

1 +
∑M

k=1 qkx
k

(2)

such that
f(x)−RL,M (x) = O(xL+M+1), (3)

i.e., the first L+M + 1 terms of the power series of RL,M (x) match the first L+M + 1 terms
of the power series of f(x).

Equations for the coefficients pk, k = 0, . . . , L and qk, k = 1, . . . ,M can be obtained by multi-
plying (3) by the denominator of RL,M (x) and equating coefficients of xk for k = 0, . . . , L+M .

The result is M simultaneous equations for the qk, k = 1, . . . ,M ,

min(r,M)∑
k=1

qkcr−k = −cr (r = L+ 1, . . . , L+M) (4)

and L+ 1 expressions for the pk, k = 0, . . . , L,

pk = ck +

min(k,M)∑
s=1

qsck−s (k = 0, . . . , L) (5)

In many cases it is convenient to consider only ‘diagonal’ Padé approximants with L = M . But
sometimes this may not be possible, e.g., for special forms of the power series the simultaneous
equations (4) corresponding to diagonal approximants may not have a solution. It that case it
may be convenient to choose M = L+ 1, or something similar.
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Programming Task: You will need to write two general purpose programs for this
project. You should use MATLAB’s 64-bit (8-byte) double-precision floating-point values
or the equivalent in other programming languages.

Program A should solve equations (4) and (5) given the coefficients ck and the values
of L and M and evaluate the resulting Padé approximant RL,M (x) for a specified set
of values of x. You may use a library routine to solve the simultaneous equations (4).
For example, if using MATLAB you can use the built-in matrix division routines such as
mldivide. If you are not using MATLAB it may be worth using iterative improvement.
(See Appendix.)

Program B should find the (possibly complex) roots of a polynomial, given the coeffi-
cients. If using MATLAB, the roots routine makes this program particularly easy to
write. Alternatively, two straightforward possibilities are discussed in section 9.5 of [3].
If a (possibly complex) roots of a polynomial routine is available with the programming
language you choose, just use it.

2 Estimating functions defined by power series

Consider the function f1(x) = (1 + x)1/2.

Question 1 Derive the power series expansion for f1(x) about x = 0, deducing a
formula for the coefficients ck for arbitrary k. What is the radius of convergence of the
power series and what limitations does this put on using the power series to estimate
f1(x)? Noting that the power series converges for x = 1 investigate the convergence of the
partial sums

∑N
k=0 ck as N increases and display selected results. Regarding the partial

sum as an estimate for
√

2, how does the error vary with N as N increases?

Question 2 Use your program to determine the Padé approximant RL,L(x) and eval-
uate this for x = 1. Again regarding this as an estimate for

√
2, how does the error vary

with L as L increases? What is the smallest value to which the error can be reduced?
What determines this smallest value? Does iterative improvement to the solution of (4)
make any difference?

Compare the results for the power series and for the Padé approximant. Which method
would you recommend to give an estimate for

√
2 to specified accuracy?

Question 3 Now consider x in the range 1 < x 6 100. Compare power series estimates
and Padé approximant estimates for f1(x) for a few choices of N and L. Display the results
graphically and discuss. For two chosen values of x (e.g., x = 10 and x = 100) investigate
carefully how the error in the Padé approximant estimates varies as L increases, display the
results graphically and discuss. What are the implications for using the Padé approximant
to estimate f1(x) for large x?

Now consider the function f2(x) =
∫∞
0 e−t(1 + xt)−1dt , which is defined for all real x > 0 (in

fact, everywhere in the complex x-plane except the negative real axis). Replacing (1 +xt)−1 by
its Maclaurin expansion and integrating term-by-term gives the asymptotic expansion

1− 1!x+ 2!x2 − 3!x3 + 4!x4 − 5!x5 + · · · (6)

This diverges for all x 6= 0, which is hardly surprising since the Maclaurin expansion of (1+xt)−1

diverges for t > x−1. Nevertheless, when truncated at a finite number of terms, the series gives
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a “good” approximation to f2(x) when x is “small”. (A more precise statement of this result,
and its justification by Watson’s Lemma, can be found in [1] or [2], or any of the books listed
in the schedule for the Part II Asymptotic Methods course.)

Question 4 Regarding the asymptotic series (6) as a power series, use program A
to generate Padé approximants for f2(x). Compare the truncated power series and the
Padé approximants as a basis for calculating f2(x) on the range 0 6 x 6 20. Note that
numerical integration gives the following values, correct to eight decimal places:

x f2(x)

0.1000 0.91563334
0.2000 0.85211088
0.3000 0.80118628
0.4000 0.75881459
0.5000 0.72265723
0.6000 0.69122594
0.7000 0.66351027
0.8000 0.63879110
0.9000 0.61653779
1.0000 0.59634736
2.0000 0.46145532
3.0000 0.38560201
4.0000 0.33522136
5.0000 0.29866975
6.0000 0.27063301
7.0000 0.24828135
8.0000 0.22994778
9.0000 0.21457710

10.0000 0.20146425
11.0000 0.19011779
12.0000 0.18018332
13.0000 0.17139800
14.0000 0.16356229
15.0000 0.15652164
16.0000 0.15015426
17.0000 0.14436271
18.0000 0.13906806
19.0000 0.13420555
20.0000 0.12972152

3 Zeros and poles

Question 5 Use Program B to determine (in the complex x-plane) the poles and zeros
of the Padé approximant RL,L(x) for f1(x). Investigate carefully how the positions of the
poles and zeros change as L is increased.

Carry out the same investigation for the functions f3(x) = (1 + x)−1/2, f4(x) = ex,
f5(x) = ex/(1 + x) and f6(x) = (1 + x + x2)1/2. [For f5(x) and f6(x) your program
will have to do some straightforward calculation to evaluate the coefficients in the power
series.]
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On this basis can you suggest how the positions of poles and zeros of the Padé approxi-
mants correspond to any poles, zeros, branch points and branch cuts of the approximated
functions? Relate your comments carefully to specific properties of each of the functions
considered. Provide a selection of results in the form of plots or short tables to support
your comments.

Do you find ‘anomalous’ poles and zeros of the approximants that do not match poles,
zeros, branch points or branch cuts of the approximated function? You will find many
such cases for f4(x) and f5(x), but should also find cases for f1(x) and f3(x), particularly
when L is large. What do you notice about the anomalous poles and zeros in these latter
cases?

Comment on any problems that might be encountered in using Padé approximants to
estimate f6 along the real x-axis. Display one or two relevant graphs.

Appendix: Iterative improvement of the solution of
linear simultaneous equations

Consider the set of equations Ax = b, where A is a square matrix, b is the column vector of
right-hand sides and x is the column vector of unknowns.

Suppose that numerical solution has generated the approximate solution y. Now suppose that
the true solution is given by x = y+δy. Multiplying by A implies that Aδy = b−Ay. This is a
set of equations for the correction δy to the approximate solution and solving gives an estimate
for the correction, and hence a refinement to the solution. This procedure may be repeated
until no further improvement is found.

Note that at each refinement the set of simultaneous equations to be solved has the same
associated matrix A. Only the right-hand sides change. Therefore there is advantage in using an
approach such as LU decomposition, since once the LU decomposition of A has been calculated
it may be used repeatedly to solve the simultaneous equations occuring at each refinement.
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