
6 Electromagnetism

6.1 Diffraction pattern due to a current strip (7 units)

Knowledge of material covered in the Part IB course Electromagnetism is useful as background.

This project investigates the magnetic field generated by an oscillating current. The field is
given in terms of an integral whose behaviour is analysed numerically.

1 Theory

Consider an infinite two-dimensional strip of conductive material in the plane y = 0 that covers
the area defined by −d < x < d and −∞ < z < ∞. A time-dependent current flows in the
z-direction, and it emits electromagnetic (radio) waves with wavelength λ. We assume that
d = nλ/2 where n is a positive integer. The time-dependent current is independent of x, z, and
is given by

jz(t) = j0e
iωt.

where j0 is a parameter and ω = 2πc/λ. In the following, all length scales are normalised so
that λ = 1, hence for example d = n/2.

Now consider the component of the magnetic field in the x-direction. It is independent of z. For
this particular form of jz(t), it can be derived from Maxwell’s equations of electromagnetism as
Hx(x, y, t) = jz(t)hx(x, y) with

hx(x, y) =
1

2π

∫ +∞

−∞
e2πiuxA(u, y)du (1)

where

A(u, y) =
sin(nπu)

u
×


exp

(
2πiy
√

1− u2
)
, |u| 6 1

exp
(
−2π|y|

√
u2 − 1

)
, |u| > 1

(2)

To avoid ambiguity, it is convenient to specify A(0, y) = limu→0A(u, y).

It can be shown that for large y, the complex modulus of the magnetic field asymptotically
approaches

|hx| '
∣∣∣∣sinnπv2πv
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√
v(1− v2)

x
, (3)

where
v =

x√
x2 + y2

.

This project investigates numerical approximations to hx(x, y), as defined in (1).

2 Numerical method

The right-hand side of (1) is a Fourier integral. Numerical estimation of this function has some
tricky features: for example, if x is large then the integrand oscillates rapidly in u. This project
uses a specialised method for integrals of this type, called the fast Fourier transform (FFT).
It is a very efficient method, in particular it allows simultaneous estimation of hx(x, y) at N
distinct values of x.
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To apply the method, note first that A decays rapidly for large u, so it is reasonable to introduce
a (large) parameter U and approximate hx(x, y) as

hx(x, y) ≈ 1

2π

∫ U

−U
e2πiuxA(u, y)du (4)

This approximation is accurate for sufficiently large U .

Now define a periodic function Aper with period 2U by taking Aper(u, y) = A(u, y) for |u| 6 U
and Aper(u + 2mU, y) = Aper(u, y) for any integer m. The integral in (4) is unchanged on
replacing A by Aper. The domain of integration can then be replaced by [0, 2U ], and it is
natural to estimate the integral by a (Riemann) sum. Define

ĥx(x, y) =
∆u

2π

N−1∑
k=0

e2πikx∆uAper(k∆u, y) (5)

with ∆u = 2U/N .

Under certain conditions, this allows hx(x, y) to be approximated by ĥx(x, y), but the accuracy of
this approximation requires some care. For example ĥx exhibits rapid oscillations as a function
of x, which are not present in hx. Also, the right hand side of (5) can be recognised as a
Fourier series (or discrete Fourier transform, DFT). Hence ĥx(x, y) is periodic in x, specifically
ĥx(x, y) = ĥx(x+ 2mX, y) with X = 1/(2∆u). However, hx is not periodic.

To understand the relation of ĥx to hx, define a periodic function hper
x by taking hper(x, y) =

h(x, y) for |x| 6 X and hper
x (x+2mX, y) = hper

x (x, y) for any integer m. Define also ∆x = 2X/N .
Then for integer m and sufficiently large values of N and U , one has

ĥx(m∆x, y, t) ≈ hper
x (m∆x, y, t) . (6)

Under these conditions, hx can be approximated by ĥx as long as |x| 6 X and x = m∆x. This
construction relies on the fact that ∆x∆u = 1/N so that the exponential factors in (5) are the
Nth roots of unity.

The FFT method is an efficient algorithm for computing sums of the form (5), for x = m∆x
and m = 0, 1, 2, . . . , N − 1. This allows accurate estimation of hper

x (m∆x, y, t) for x ∈ [0, 2X]
and hence of hx. The method is described in the Appendix. For cases where N is an integer
power of 2, the FFT is much faster than computing the sum (5) individually for each value of
m in turn. For this project, it is not necessary to understand any of the details, you only need
to invoke an FFT routine to compute the relevant quantities. You may use a Matlab routine
such as fft or ifft, or an equivalent routine in any other language, or you may write your own
(but you should not compute (5) directly).

Finally, note that we have defined the method by taking N and U as parameters, from which
∆u,∆x,X are derived. From a practical point of view it is more natural to take N and X as
parameters, from which one may derive U and the other relevant quantities.

3 Numerical work

Programming Task: Given values of n, y,N,X, write a program to compute (5) by
FFT, for x = m∆x and m = 0, 1, . . . , N − 1. It is sufficient to restrict to N = 2p for
integer p. The program should also use (6) to estimate the real and imaginary parts of
hx for x ∈ [−X,X]. Also estimate its complex modulus |hx|. It will be necessary to plot
these estimates.
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Question 1 Take

n = 2 , y = 0.2 , X = 5 , N = 256 .

Plot your estimates of the real and imaginary parts of hx, and its modulus, for |x| < X.
Derive the relationships between hx(x, y) and hx(−x, y) and hx(x,−y). Verify that your
results are consistent with these relationships.

Question 2 Keeping n = 2 and y = 0.2, compute estimates of hx(x, y) for |x| < 5,
using different values of X and N (always with X > 5). Analyse the behaviour of your
estimates, as N and X are varied.

Note: In this question and throughout this project, you should provide graphs that il-
lustrate clearly the effect of the parameters on your results. Note that large numbers of
graphs are very unlikely to be effective in communicating this information.

Question 3 For n = 2, produce a single graph that shows |hx| as a function of x for
for y = 0.12, 0.6, 1, 6, 12. Fix N = 256 and choose suitable values of X (dependent on y).
Justify the values that you have chosen. Are there some values of y for which larger (or
smaller) values of N would be appropriate?

Compare your numerical results for large y with the asymptotic formula (3). This com-
parison must be presented in a way that illustrates clearly any differences between the
numerical estimates and the asymptotic formula. It may be useful to consider additional
values of y, as well as those listed above.

Question 4 Perform a similar analysis to question 3 but now for n = 3, 4. Justify
your choices of N,X. Combining these results with those of question 3, discuss how the
approximation of h by ĥ depends on both n, y and N,X.

Question 5 Comment on the physical significance of your results. In particular, how
do your results demonstrate the phenomenon of diffraction?

Appendix: The Fast Fourier Transform

Given a vector of complex numbers µ = (µ0, µ1, . . . , µN−1), define

λr =
N−1∑
k=0

µke
−2πikr/N . (7)

The FFT is an efficient (fast) method of evaluating the vector λ = (λ0, λ1, . . . , λN−1), which is
the discrete Fourier transform. The same algorithm can also be used to evaluate similar vectors
where the factor e−2πikr/N in the definition of λr is replaced by e2πikr/N , this is sometimes called
the inverse FFT.
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Note that (7) corresponds to multiplication of the vector µ by a particular N ×N matrix that
we denote by Ω(N). Its elements are taken from the set of Nth roots of unity. It follows that λ
can be computed using approximately N2 multiplication operations. (There would be a similar
number of addition operations, it is assumed here that the multiplication operations take the
greater part of the computational effort.) If N = 2p for integer p, the FFT can compute λ much
more quickly, it requires approximately (N/2) log2N multiplication operations.

To see this, divide µ into even and odd subsequences, that is µE = (µ0, µ2, . . . , µN−2) and
µO = (µ1, µ3, . . . , µN−1). Their Fourier transforms are given by matrix multiplication as

λE = Ω(N/2)µE, λO = Ω(N/2)µO . (8)

Then it may be shown that

λr = λEr + e2πir/NλOr

λr+N/2 = λEr − e2πir/NλOr

}
r = 0, 1, . . . , N2 − 1 (9)

Hence if λE and λO are known, it requires (N/2) multiplications to evaluate λ.

Moreover, since λE is itself the Fourier transform of a particular sequence µE, it can be esti-
mated efficiently by further splitting µE into even and odd subsequences. For N = 2p, this
decomposition is repeated p times, leading to an FFT in p stages.

In stage 1, each element µk of µ is treated as a sequence µ(k,1) of length 1. Their Fourier trans-

forms are simply λ
(k,1)
0 = µ

(k,1)
0 . These sequences are labelled as even/odd, and are combined

in pairs using a rule similar to (9), which generates N/2 sequences each of length 2. These
are denoted as λ(k,2) for k = 0, 1, 2, . . . , (N/2) − 1. In stage 2, these new sequences are again
labelled as even/odd and combined in pairs using the generalised (9), to obtain N/4 sequences
of length 4, denoted by λ(k,4) for k = 0, 1, 2, . . . , (N/4) − 1. The procedure repeats until stage
p ends with a single sequence λ(0,2p) of length 2p.

The detailed rules that explain how the sequences are combined can be found in the original
paper [1] or in standard textbooks such as [2]. These are chosen such that λ(0,2p) = λ, the
vector of interest.

For efficiency, the key point is that each step requires N/2 multiplication operations and there
are p = log2N stages. Hence the algorithm only requires (N/2) log2N multiplication operations,
as advertised above.
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