3 Fluid and Solid Mechanics
3.9 Viscous Flow in a Collapsible Channel (9 units)

This project requires a knowledge of lubrication theory for a viscous fluid, as taught in the Part IT
course Fluid Dynamics II and described in [1].

1 Introduction

The tubes that carry fluid around the body (such as veins, arteries, lung airways, the urethra,
etc.) have deformable walls. The shape of such a tube is strongly coupled to the flow within it
through the internal pressure distribution. This nonlinear flow-structure interaction imparts to
such systems unusual but biologically significant properties, notably “flow limitation” (so that
airway flexibility limits the rate at which you can expel air from your lungs, for example). To
explore such interactions, one can consider a simple model system in which an incompressible
fluid flows steadily through a two-dimensional channel, one wall of which is formed by a mem-
brane under longitudinal tension. Assuming that the channel is long and thin, and that the
fluid is sufficiently viscous, lubrication theory can be used to describe the flow.

Suppose the channel lies in 0 < y < h(z), 0 < « < L, where L > h. Applying no-slip and
no-penetration conditions along the rigid wall ¥y = 0 and the membrane y = h, the relationship
between the steady, uniform flux ¢ of fluid along the channel and the local pressure gradient
pe is approximately ¢ = —h®p,/(12u), where p is the fluid’s viscosity, assumed constant. The
fluid pressure distribution p(z) is controlled by the shape of the channel wall according to
p = —Thy,, where T is the tension in the membrane, assumed constant; the pressure outside
the membrane is taken to be zero. We assume that the membrane is fixed at either end, so
that h(0) = h(L) = hg, for some constant hg. The flow is controlled by the upstream and
downstream pressures p(0) = p,, and p(L) = pg4, and characterised by the relationship between
the flux ¢ and the pressure drop along the channel, p, — pg, holding either p, or p; constant.

The problem can be simplified by nondimensionalisation. Let
h([l)):hoH(X), l':LX, and p($):p0P(X)>

where pg = Tho/L?. This yields nondimensional parameters Q = 12uL3q/(Thd), P, = pu/Dpo,
P; = pg/po and governing equations

Q=-H?Px, P=-Hyx (0<X<1) (1)

subject to
HO)=1, H(1)=1, P(0)=Pr, P(l)=P;. (2)

We seek graphs of AP = P, — P; > 0 as a function of @, for fixed values of P, or P;. (So only 3
of the 4 boundary conditions in (2) are relevant.)

This is a two-point, third-order, boundary-value problem. It can be solved by two different
methods: shooting, which is relatively easy to program but which cannot normally be extended
to problems in higher dimensions; and a direct finite-difference method, which is more com-
plicated to set up but adaptable to more complex situations. The relatively straightforward
problem given by (1) and (2) can be used to explore the relative merits of each method; both
methods can be used to explore the fluid mechanics of collapsible channel flow.
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2 The shooting method

Use a Runge-Kutta routine, or equivalent (e.g. the MATLAB function ode45), to integrate (1)
from X =1 to X = 0 (say), by fixing Q and Py, setting H(1) =1, H'(1) = 8, H'(1) = - P,
and then varying § until H(0) = 1. If you know that a solution exists for 81 < 8 < (2, say,
a root-finding routine will be useful in quickly homing in to the required solution. Note that
you should not use a boundary-value problem solver such as the MATLAB functions bvp4c or
bvpbc, or equivalent.

You should check that your predicted channel shapes and pressure distributions are of sufficient
accuracy by varying any tolerance you have specified on the step-length, etc. You will also need
to compute solutions with P, fixed, shooting from X =0 to X =1 (see Question 3 below).

3 The direct finite-difference method

Writing (1) in the form HxxxH?® = @, discretise this equation and the boundary condi-
tions with second-order accurate finite differences on a uniform N-node grid with grid-spacing
A =1/(N—-1) and grid points X; = (j—1)A (j =1, ..., N). Use forward (or backward) differ-
ences for the discretisation of the second derivative in the upstream (or downstream) pressure
boundary condition. In most of the interior domain you can use a central difference expression
for the discretisation of Hx x x, but near one of the boundaries of the domain you will have to
use a non-central difference expression; suitable difference formulae are given in Appendix A.

The three discretised boundary conditions and the discretised ODE, written at (N — 3) interior
gridpoints X;,(j =3, ..., N—1), provide a total of NV non-linear algebraic equations F;(H;) = 0
(i,7 =1, ..., N) for the discrete membrane heights H; = H(X;) . Solve this set of equations
with a Newton-Raphson method (e.g. [2]).

The Newton-Raphson method requires the Jacobian matrix of the non-linear equations
Jij = 0F;/0H;,

which can be determined by differentiating the discretised equations. At each stage of the
iteration, the method requires solution of a set of linear equations. You might find the MATLAB
function spdiags useful here (see also help sparfun in MATLAB).

You should include a brief summary of the equations needed for this method in your write-up.

4 Continuation techniques

The Newton-Raphson method usually requires a “good” initial guess in order to converge to a
solution, so to generate solutions corresponding to strongly deformed channels a continuation
technique should be used. (The shooting method can also benefit from this approach, but it is
not usually necessary.) Start the computation with parameter values corresponding to a known
solution (e.g. a slightly deformed channel with P; = 0, @ < 1) and use the undeformed channel
(H = 1) as an initial guess. Having found this solution, slowly increment the parameters () and
Py to construct solutions with the channel highly deformed.

5 Questions

Throughout this project you should comment on the physical interpretation of your computed
results as well as their mathematical or numerical features.
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Question 1  Compute some static wall shapes when there is no flux through the chan-
nel, with the fluid pressure both positive and negative. These shapes can be determined
analytically: compare your predictions using both numerical methods above with the
exact analytical results.

By considering analytically the case when |H — 1| < 1, or otherwise, show that for @ > 0
there are three possible types of solution, depending on the values of P, or P;: those with
the channel dilated (H > 1in 0 < X < 1); those with the channel collapsed (0 < H < 1
in 0 < X < L); and those with both dilation and collapse (H > 1 for 0 < X < X
and H < 1 for X < X < 1, for some X;). Show that both numerical methods predict
the same channel shapes and pressure distributions for typical values of @, P, and Pj.
Comment on the qualitative differences between () = 0 and @ > 0.

Question 2  Using either method, produce graphs of AP as a function of @ for fixed
values of the downstream transmural pressure Py, showing examples with P; both positive
and negative (consider, say, —3 < Py < 3, 0 < @ < 6). Show that the slope of the graph
of AP versus @ falls as @) increases, and show how the channel shape evolves as this
happens. Explain this behaviour in physical terms.

Question 3 By shooting from X =0 to X = 1, produce graphs of AP as a function
of @ for fixed values of the upstream transmural pressure P,, both positive and negative,
and again describe the evolution of the channel shape. This case requires slightly more
care than Question 2, as you may find that the solution is not unique. Show that for each
value of P, there is a maximum possible flow rate through the channel. Obtain the same
graphs using the direct finite-difference method; explain any techniques that you may
need to introduce in order to obtain converged solutions. Explain the physical mechanism
by which the flux may fall as the pressure drop across the channel is increased.
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A Finite difference formulae

Here is a collection of second-order accurate finite difference expressions for the second and
third derivatives of the channel height [H; = H ((j — 1)A)]:

H; 1 —-2H;+ Hj

AQ
o 2Hj — 5Hj+1 + 4Hj+2 — Hj+3
= A2
| 9H; —BH; y +4H,; 5 — Hj 4
= A2
Hjio —2Hj1 +2H;_1 — Hj_»

2A3

_ 3Hj+1 — 10HJ + 12Hj,1 - 6Hj,2 + Hj,3
2A3

H"(X;) =

H//(X])

a"(X;)

H(X;) =

H/// (X])
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