
3 Fluid and Solid Mechanics

3.8 Wind-Forced Ocean Currents (10 units)

This project may well be attempted by someone who has attended the two Fluid Dynamics courses
in Part IB and Part II.

1 Theory

Western boundary currents develop on the western sides of the ocean basins in response to
wind forcing. Poleward flowing western boundary currents like the Gulf Stream and Kuroshio
carry vast amounts of heat from the tropics to the mid-latitudes. Here, you will investigate
wind-forced ocean circulation and the formation of western boundary currents in an idealized
rectangular ocean basin.

A simple depth-independent model of the wind-forced ocean circulation is described by the
governing equation for the streamfunction ψ(x, y, t),

ζt + J(ψ, ζ) + v = −εζ +Rτ (1)

in 0 6 x 6 1, 0 6 y 6 1 with ψ = 0 on the boundaries. x and y are Cartesian coordinates
representing eastward and northward directions respectively. The vorticity ζ is related to ψ
through the Poisson equation

∇2ψ = ζ, (2)

and the x and y components of the velocity, respectively u and v, may be written in terms of
ψ as

u = −∂ψ
∂y

, v =
∂ψ

∂x
(3a, b),

J(ψ, ζ) is the Jacobian with respect to x and y and is an alternative way of writing the advective
derivative term u.∇ζ. The −εζ term on the right-hand side of (1) is a simple representation of
the effect of bottom friction on the flow. The constant ε is a nondimensional frictional damping
rate. The term Rτ(x, y), representing the wind forcing, is equal to the curl of the wind stress.
It is convenient to take τ to be a prescribed function of x and y and, when investigating the
behaviour of the model, to vary the strength of the forcing by varying the constant R.

The steady state form of (1) may be written in the form

u.∇(ζ + y) = Rτ − εζ, (4)

implying that in the absence of wind-forcing and bottom friction the quantity ζa = ζ + y would
be conserved following the fluid motion. ζa is known as the ‘absolute vorticity’ and is the vertical
(i.e. perpendicular to the Earth’s surface) component of the vorticity measured with respect
to an inertial frame (i.e. including the Earth’s rotation as well as the motion of fluid relative
to the Earth). The y contribution to the absolute vorticity is a simple representation of the
variation of the vertical component of the rotation vector with latitude.

Question 1 Use incompressibility of u to rewrite the left hand side of (4). By inte-
grating (4) over a region enclosed by a streamline and, using the divergence theorem on
the left-hand side, deduce that if τ is one-signed then no steady state is possible if ε = 0,
i.e. friction is essential in the steady-state balance.
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In this project you will be concerned with steady-state solutions to (1), and their variation as ε
and R are changed. However, a convenient way to find the steady-state solution is to integrate
(1) in time, say from initial conditions in which ψ = 0 for all x and y, until the steady state is
achieved.

2 Numerical solution of (1)

Define a rectangular grid covering the domain, with points

(xi, yj) =

(
i

Nx
,
j

Ny

)
0 6 i 6 Nx, 0 6 j 6 Ny.

The grid spacings are δx = 1/Nx and δy = 1/Ny in the x and y directions respectively. The
variables ζ and ψ are defined at each point on the grid and it is helpful to use the notation,
ψt
i,j = ψ(xi, yj , t), ζ

t
i,j = ζ(xi, yj , t). (The superscripts denote the time at which a particular

quantity is to be evaluated.)

In order to integrate (1) in time it is sensible to use the ζti,j as the working independent variable
and derive all the other quantities by solving (2) and then using finite-difference approximations
for spatial derivatives in (1). You are recommended to use the expressions

vti,j =
ψt
i+1,j − ψt

i−1,j

2δx
(5a)

for v and

J t
i,j = [(ψt

i+1,j+1 − ψt
i−1,j+1)ζti,j+1 − (ψt

i+1,j−1 − ψt
i−1,j−1)ζti,j−1

− (ψt
i+1,j+1 − ψt

i+1,j−1)ζti+1,j + (ψt
i−1,j+1 − ψt

i−1,j−1)ζti−1,j ]/4δxδy, (5b)

for the Jacobian, both evaluated at the point (xi, yj) and time t.

To begin, it is recommended that to integrate (1) in time using the explicit Euler scheme in the
form

ζt+∆t
i,j − ζti,j + J t

i,j∆t+ vti,j∆t = −1
2ε

(
ζt+∆t
i,j + ζti,j

)
∆t+Rτi,j∆t. (6)

for 1 6 i 6 Nx−1, 1 6 j 6 Ny−1. Note that the boundary condition on ψ means that evaluating
Ji,j via (5b) at points immediately adjacent to the boundary does not require knowledge of ζ on
the boundary itself. There is no need to impose or determine ζ on the boundary at any stage.

Question 2 Write a program to integrate the above. Take τ = − sinπx sinπy. You
may use a library routine for the solution of Poisson’s equation (see Appendix below). Try
using a grid size Nx = Ny = 32. Note that numerical accuracy of the time integration is
not particularly important here because it is only the final steady state that is of interest.
You should experiment to find the largest possible time step ∆t for which the integration
remains stable and approaches a steady state.

Concentrate first on the case where R is very small. For ε = 0.2 and ε = 0.05 produce
a plot to verify that your solution approaches a steady state. Plot contour maps of the
streamfunction and vorticity fields for the steady state solution. Describe your results in
qualitative terms.

In this regime you may assume that ζ and ψ scale with R and thus you might find it
helpful to redefine ζ and ψ as ζ̂ = ζ/R and ψ̂ = ψ/R. Then in the limit R → 0 the
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nonlinear term involving the Jacobian may be neglected, and the steady state form of (1)
can be approximated as

v̂ = −εζ̂ + τ . (7)

You should see that the solution for ε = 0.05 is highly asymmetric in the x direction with
a strong narrow flow close to the x = 0 boundary and a broad weaker flow in the interior.
Which term in the equation (1) leads to this asymmetry? For the case ε = 0.05, indicate
which terms in the equation play a dominant role in the balance in different parts of the
flow. Provide an argument for why a strong current near the x = 1 boundary cannot
exist. In this linear (i.e. small R) case, estimate the maximum value for ψ in the small-ε
limit. (Consider where a boundary layer may lie, and which boundary conditions you can
discard.) Repeat your integrations at higher resolution with Nx = Ny = 64. What are
your conclusions? What resolution do you think would be needed to adequately resolve
the boundary current near x = 0?

Question 3 Now, for ε = 0.05 investigate the steady-state behaviour as R increases
through the range 5 × 10−4 to 10−1. Continue to use Nx = Ny = 32. You will find that
the timestep ∆t must be reduced as R increases, firstly to suppress numerical instability
and secondly to allow a steady state to be achieved. For R = 0.1 you will need to run
your code for a while in order for a steady state to be achieved. You might find it helpful
to replace (6) with a more accurate time-stepping scheme such as a 3rd order accurate
Runge-Kutta or Adams-Bashforth scheme. This should allow you to take larger time
steps, but it is not necessary and full marks can be obtained using (6).

Describe how the pattern of flow changes as R is increased. You may find it useful to
look at contour plots of ψ and ζ and also of the quantity y+ ζ. Include sufficient plots in
your report to illustrate your main points. By considering plots of ψ and ζ and y+ ζ, for
large R identify the terms involved in the dominant balance of equation (1). Plot a graph
of the maximum value of the streamfunction in the domain, ψmax against R, and try to
explain its form. How would you expect ψmax to depend on the frictional damping rate ε
in the large-R and small-R limits?

3 Reference

This topic is discussed in some detail in Chapter 19 of the book by Vallis (Vallis, G.K., 2017:
Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press; reference copies and
an online version are available from the Betty and Gordon Moore Library) but it is certainly
not necessary to understand all of this Chapter in detail in order to complete this project.

Appendix

A solver of the Poisson equation in (2) for ψ given ζti,j , is provided on the CATAM website,
located among the data files. After copying these matlab files into your working directory, you
should be able to call the function poisson which is described below.

If you are using python, you can call the matlab script using oct2py. To do this, first in-
stall oct2py (e.g. pip install oct2py). Then, in your python script use the following com-
mands: from oct2py import Oct2Py, oc = Oct2Py(), and call the function poisson.m using, e.g.
psi=oc.poisson(x,5,zeta).

July 2024/Part II/3.8 Page 3 of 4 ©c University of Cambridge



[psi]=poisson(x,N,f)

The solver assumes a square grid and that ψ is 0 on all 4 boundaries.

x: vector with grid locations in the x direction (and equivalently in the y direction).
The first and last gridpoints in x should correspond to the boundary locations.

N: Type of integration scheme. For 5 point N=5, 9 point N=9, modified 9 point N=10.
For more information see reference below.

f: Function to be integrated, in this case ζ. Note that f should be a matrix of size
(length(x),length(x)).

psi: The solution to the Poisson equation on the interior gridpoints (excluding the val-
ues on the boundary which are set to 0). psi will be a matrix of size (length(x)-
2,length(x)-2).

For more information on Poisson.m go to https://cs.nyu.edu/~harper/poisson.htm. Note
that while the mathematics involved in the version described at the link are the same, the inputs
of the Poisson solver provided have been modified slightly.
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