
3 Fluid and Solid Dynamics

3.1 Boundary-Layer Flow (6 units)

This project is based on a section of the Part II course Fluid Dynamics but the relevant material
can be found in Chapter 8 of [1] or Chapter V of [2]; a brief outline is given below. Further
relevant material can be found in book by Sobey [3] and the paper by Stewartson [4].

1 Background Theory

Consider flow of an incompressible viscous fluid of constant density ρ and kinematic viscosity ν,
whose velocity u(x, t) and hydrodynamic pressure p(x, t) satisfy the incompressibility condition

∇.u = 0 , (1)

and the Navier-Stokes momentum equation

ρ (ut + (u.∇)u) = −∇p+ ρν∇2u . (2)

It follows that the vorticity ω ≡ ∇× u satisfies

ωt + (u.∇)ω − (ω.∇)u = ν∇2ω . (3)

If the flow is two-dimensional, it can be expressed in terms of a streamfunction ψ(x, y, t), with

u ≡ (u, v, 0) =

(
∂ψ

∂y
,−∂ψ

∂x
, 0

)
, ω =

(
0, 0,−∇2ψ

)
, (4)

in terms of which the vorticity equation (3) becomes

∂

∂t

(
∇2ψ

)
−
∂
(
ψ,∇2ψ

)
∂ (x, y)

= ν∇2
(
∇2ψ

)
. (5)

Suppose there is a stationary rigid boundary on y = 0, x > 0 on which must be satisfied the
conditions of no slip, u = 0, and no penetration, v = 0. If the viscosity is ‘small’, then away from
the boundary the flow may, to a good approximation, be irrotational: in this case u ≈ ∇φ for a
velocity potential φ satisfying ∇2φ = 0 (incompressibility) and ∂φ/∂y = 0 on y = 0, x > 0 (no
penetration). These conditions, together with corresponding ones on other boundaries and/or
at infinity, are sufficient to determine ∇φ uniquely. As a result, it is not possible to specify the
tangential (‘slip’) velocity component on the boundary, i.e.

∂φ

∂x
(x, 0, t) ≡ Ue(x, t) (x > 0) .

Instead, Ue(x, t) is determined as part of the irrotational potential-flow solution, and is neces-
sarily non-zero. There must therefore be a ‘boundary layer’ near y = 0 where the potential-flow
approximation is not valid and satisfaction of the no-slip condition implies viscous diffusion of
vorticity away from the boundary.

If the boundary layer is ‘thin’, in the sense that within it ∂/∂x � ∂/∂y (i.e. variations with
respect to y are much more rapid than variations with respect to x), then the approximations

∇2ψ ≈ ψyy , ∇2
(
∇2ψ

)
≈ ψyyyy ,
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may be made in equation (5), which can then be integrated once with respect to y to give

ψyt + ψyψxy − ψxψyy = G(x, t) + νψyyy , (6)

This is in fact the x-component of the Navier-Stokes momentum equation (2) with the ρνuxx
term neglected (since it is small compared to ρνuyy). The forcing term, or more precisely −ρG,
may be identified with the pressure gradient ∂p/∂x (which in this approximation is independent
of y, i.e. uniform across the ‘thin’ boundary layer). Equation (6) is to be solved in conjunction
with the conditions of no slip and no penetration at the boundary, i.e.

ψy = 0 , −ψx = 0 ⇒ ψ = ψ0(t) , on y = 0 , (7)

where ψ0(t) = 0 without loss of generality. In addition the solution must ‘match’ to the outer
potential flow, i.e.

u ≡ ψy → Ue(x, t) as y →∞ . (8)

It follows from (6) and (8) that

G(x, t) =
∂Ue
∂t

+ Ue
∂Ue
∂x

. (9)

In the special case when the flow is steady, ∂/∂t = 0, and when

Ue(x) = Axm for x > 0 , (10)

with A and m constants, the problem (6)–(9) admits a ‘similarity’ solution with

ψ(x, y) = |Ue(x)|δ(x)f (η) , η =
y

δ(x)
and δ(x) =

(
νx

|Ue(x)|

) 1
2

. (11)

Here, δ(x) is a measure of the local boundary-layer thickness, and the function f satisfies the
Falkner–Skan equation

m
(
f ′
)2 − 1

2(m+ 1)ff ′′ = m+ f ′′′ , (12)

with the boundary conditions

f ′ = f = 0 on η = 0, f ′ → sgnA as η →∞. (13)

In fact, if there is no source of vorticity other than the boundary y = 0, then f ′ should converge
to sgnA exponentially fast as η →∞, i.e.

ηN
(
f ′ − sgnA

)
→ 0 as η →∞ for any N . (14)

The tangential velocity component is obtained from (4) and (11) as

u =
∂ψ

∂y
= |Ue(x)|f ′(η) . (15)

The tangential stress (force per unit area in the x-direction) exerted by the fluid on the boundary
y = 0 is

τ0 ≡ ρν
∂u

∂y

∣∣∣∣
y=0

= ρ

(
ν|Ue(x)|3

x

) 1
2

f ′′(0). (16)

Different values of m arise for different external flows. Particular cases are (taking A > 0 unless
stated otherwise):

July 2024/Part II/3.1 Page 2 of 5 ©c University of Cambridge



m = 1 : Flow towards a stagnation point on a plane wall.

0 < m < 1 : Flow past a wedge of semi-angle θ = πm
m+1 .

m = 0 : Flow past a flat plate (the Blasius boundary layer).

−1
2 < m < 0 :

Flow around the outside of a corner, turning
through an angle θ = − πm

m+1 with slip (but no pen-
etration) upstream of the corner, and no slip (and
no penetration) downstream. This is an artificial
problem, but it might be that the solution could
arise as the downstream limit of a realistic flow.

stick
slip

m = −1 :
Flow due to a line source (for A > 0) or line
sink (A < 0) at the intersection of two plane rigid
boundaries (at arbitrary angle).

The aim of this project is to solve the two-point-boundary-value problem (12)–(14) by ‘shooting’,
finding by trial-and-error the values of f ′′(0) which give a solution with the required behaviour
as η →∞. Except in the last question, attention is to be restricted to the case A > 0.

2 Analysis

Question 1 Examine analytically the possibility that a solution of the Falkner-Skan
equation (12) has one of the following terminal behaviours as η →∞:

(i) algebraic convergence,

f ′ = 1 +Bη−k + . . . as η →∞ ;

(ii) exponential convergence,

f = η − η0 + e−σ(ξ) + . . . as η →∞ ,

where ξ = η − η0 and

σ′(ξ) = kξ + k′ + k′′ξ−1 +O
(
ξ−2

)
;

(iii) algebraic divergence,
f = Bη1+k + . . . as η →∞ ;

(iv) exponential divergence,

f = Bekη + . . . as η →∞ ;
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(v) a finite-distance singularity, at η = η0 say, with

f = B (η0 − η)−1 + . . . as η → η0 .

Here B, η0, k, k′, k′′ are constants with B 6= 0 and k > 0. For each case deduce by means
of an asymptotic series solution, or otherwise,

(a) which (if any) of these constants can be determined without use of conditions at
η = 0;

(b) what restrictions (if any) must be placed on the value of m for this type of behaviour
to be possible.

3 Computation

Programming Task: Write a program to integrate the Falkner–Skan equation (12)
subject to the one-point boundary conditions

f(0) = f ′(0) = 0 , f ′′(0) = S , (17)

where S is a known constant. You may use a black-box numerical integrator for this
problem such as the Matlab routine ode45, but you should not use any two-point-
boundary-value solver such as the Matlab routine bvp4c (except possibly as a check).

Question 2 Integrate the Falkner-Skan equation (12) with boundary conditions (17)
for m = 0 and S = 1. You should find that f ′ converges to a constant as η →∞; comment
on the nature of the convergence, and determine the constant to at least four significant
figures, presenting evidence that this accuracy has been achieved.

Explain how it is possible to deduce, without further computation, a solution of the
boundary-value problem (12)–(13) for m = 0, and state f ′′(0).

Hint: consider af(bη) for suitable constants a and b.

Question 3 Now apply the shooting method for 0 6 m 6 1. You should find that for
each m in this range, there is a unique value of S, call it Sm, for which f ′ → 1 as η →∞.
For m = 2

5 and m = 1, plot graphs of f ′ against η for various values of S, both less than
and greater than Sm, and comment on their terminal behaviours with reference to the
terminal behaviours listed in question 1.

Write a program to determine Sm. Note:

• you may wish to use a black-box root-finder such as the Matlab routine fzero;

• it may also be helpful, for the next question, to have the option of finding the inverse,
i.e. determining m for given S.

Tabulate and plot Sm against m for 0 6 m 6 1 correct to at least four significant figures,
explaining why you are satisfied with the accuracy.

Comment on the physical interpretation of your solutions, e.g. the effect of varying m.

Question 4 Investigate solutions of the Falkner-Skan equation (12) subject to (17)
for various m in the range −1 < m < 0 and various S (both positive and negative), and
display some representative results, illustrating the different kinds of terminal behaviour
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(as enumerated in question 1) which occur. In the range mc < m < 0 (where mc is to be
determined) you should find two branches of exponentially converging solutions, one of
which is the continuation of that already found for m > 0. Tabulate and plot Sm against
m for both branches, and plot f ′ for both solutions against η for at least one value of m.
Discuss the physical interpretation of each solution, and the form of the second solution
as m ↑ 0.

In the interval −1 < m < mc, there are other branches of exponentially converging
solutions: plot at least two of these branches in the m-S plane, and present graphs of f ′

against η for a few of the solutions. Comment on their physical significance.

Question 5 Investigate (numerically) m = −1, for both signs of A. What are your
conclusions?

References

[1] Acheson, D. J., Elementary Fluid Dynamics. O.U.P.

[2] Rosenhead, L. (ed.), Laminar Boundary Layers. Dover. (In particular Chapter V, sections
1, 12-17, 21.)

[3] Sobey, I. J., Introduction to Interactive Boundary Layer Theory. O.U.P.

[4] Stewartson, K. (1954) Further solutions of the Falkner-Skan equation. Proceedings of the
Cambridge Philosophical Society, volume 50, issue 03, pages 454-465. See

http://dx.doi.org/10.1017/S030500410002956X

July 2024/Part II/3.1 Page 5 of 5 ©c University of Cambridge

http://dx.doi.org/10.1017/S030500410002956X

	PROJECT  3.1 Boundary-Layer Flow
	Background Theory
	Analysis
	Computation

