
23 Astrophysics

23.8 Chaos in the Encounter Map (8 units)

No knowledge of astrophysics is assumed or required for this project. All relevant equations are
defined and explained in the questions.

The orbit of a body around the Sun is described by an ellipse:

r(θ) =
a(1− e2)

1 + e cos(θ −$)
, (1)

where r is the radial position, a is the semi-major axis, e is the eccentricity, θ is the true
longitude, and $ is the longitude of perihelion, where perihelion is the distance of closest
approach to the Sun. It is sometimes useful to combine e and $ into a single complex variable
z = e exp(i$), where i =

√
−1. It is also useful to define the mean longitude which increases

linearly with time λ = nt, where n is the mean motion of the body given by Kepler’s third law
n2 = Gm�/a

3, G is Newton’s gravitational constant and m� is the mass of the Sun.

No such analytical solution exists for the three-body problem. This project investigates an
algebraic mapping called the encounter map which considers a massless test particle orbiting in
the gravitational potential of two massive bodies: a star of Solar mass (i.e. m = 1m�) and a
planet on a circular orbit with mass ratio µ = mpl/m� � 1. The encounter map considers the
particle to orbit the Sun on a Keplerian orbit defined by equation 1 until the particle reaches
conjunction with the planet, i.e., when they are at the same mean longitude, at which point
the orbital elements are changed impulsively and the particle continues on its new orbit until
the next conjunction. Note, that in the following, the planet’s properties are denoted with a
subscript pl and the test particle’s properties are unsubscripted or subscripted by a number to
keep track of conjunctions.

A derivation of the encounter map requires working in a reference frame corotating with the
planet and centered on it, with the x-axis pointing away from the star and the y-axis pointing in
the direction of the planet’s motion. The motion of the particle is governed by Hill’s Equations:

ẍ− 2nplẏ − 3n2plx = −
Gmplx

∆3

ÿ + 2nplẋ = −
Gmply

∆3
, (2)

where ∆ =
√
x2 + y2 is the distance from the planet to the particle. A conserved quantity of

these equations is the Jacobi constant:

CH = 3n2plx
2 +

2Gmpl

∆
− ẋ2 − ẏ2. (3)

Question 1 Consider motion in Hill’s equations before or after a conjunction. Derive
the solution of Hill’s Equations:

x ∼ D1 cosnplt+D2 sinnplt+D3,

y ∼ −2D1 sinnplt+ 2D2 cosnplt−
3

2
D3nplt+D4, (4)

in the limit ∆→∞, where Di are constants.
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It can be shown that, for elliptic orbits, D1 +iD2 = −aplz exp(−iλc) and D3 = a−apl, where λc
is the longitude of the planet at conjunction. It can also be shown that, as a result of a single
conjunction, to lowest order in mass ratio, the coefficients D1 and D3 are unchanged, but that

∆D2 = −g sign(D3)
µa3pl
D2

3

(5)

where g = 2.239566674. Note that this result requires that the test particle has a low-eccentricity
orbit which is not too distant from the planet, so that e� 1 and ε = (a− apl)/apl � 1, but the
particle must also be sufficiently far from the planet that it feels only a small perturbation at
conjunction, requiring ε > e+ (µ/3)1/3 so that the particle’s eccentricity does not carry it into
the region in which the planet’s gravity is stronger than the star’s.

Question 2 Using the conserved quantity CH, find a more accurate expression for
the change in D3, assuming that D1 remains unchanged, and that ∆D2 is given by equa-
tion 5. Hence derive the mapping from the orbital elements prior to the n-th conjunction,
occurring at longitude λn, zn and εn, to those at the (n+ 1)-th conjunction at λn+1:

zn+1 = zn +
ig exp iλn

ε2n
sign(εn)µ (6)

εn+1 = εn

√
1 +

4(|zn+1|2 − |zn|2)
3ε2n

(7)

λn+1 = λn + 2π|(1 + εn+1)
−3/2 − 1|−1. (8)

Question 3 To make the map area-preserving, it is necessary to change instances of
εn to ε1 in the equation for zn+1. With this change, write a program to implement the
map derived in Question 2. Consider a planet at 1 AU [1 AU = 1 Astronomical Unit,
the mean distance of the Earth from the Sun] with a mass of 10−5 times solar, orbiting
a solar-mass star. Calculate the Jacobi constant CH for a particle initially at 1.08 AU
on a circular orbit. Generate a population of 100 other particles with the same Jacobi
constant, but with eccentricities up to 0.07, and evolve their orbits for 1000 iterations of
the map. Show some representative examples of the evolution of orbital elements. Are
your conclusions about the particles’ behaviour affected if more iterations are performed?

Question 4 Let yn = zn exp(−iθn), where θn = λn− π
∣∣(1 + εn)−3/2 − 1

∣∣−1
+ π. Plot,

on a single figure, the evolution of y in the Argand plane for the trajectories calculated in
Question 3, and describe the behaviour (this is called a Poincaré surface of section).

A mean motion resonance occurs when the ratio of the bodies’ mean motions is an integer
commensurability j : j − k such as 3:2. The strongest and most important are the first-order
resonances where the ratio is j : j − 1. A particle is in resonance with a planet if the relevant
resonant argument is librating rather than circulating. The resonant argument is given by

φ = jλ− (j − k)λpl − k$ (9)

for a j : j − k resonance; typically the resonant argument librates about π. The resonances
nominally occur at specific semi-major axes, but have a finite width, so that a particle at 1.6 AU
may still be in the 2:1 resonance with a planet at 1 AU. The width of the first order resonances
depends on eccentricity, but is given roughly by

δa/a ≈ µ2/3j1/3 (10)

for large j.
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Question 5 For the parameters of question 3, calculate the eccentricies for particles
located in first-order resonances. Give the physical interpretation of the angle θ, and relate
the argument of the complex variable yn to the resonant argument φ for a given resonance.
Hence determine whether these resonances explain any features of the Poincaré surface of
section.

Question 6 Devise a method to automatically classify the trajectories as regular or
chaotic. This distinction does not need to be rigorously demonstrated, but can be based
on your observations of the behaviour. Describe the method and what motivates it.
Check that it agrees with a classification by eye of the trajectories calculated in previous
questions. (Hint: You may find it useful to look at the Fourier transform of the time-series
of orbital elements).

Question 7 Now consider particles on initially circular orbits. For a range of mass ra-
tios µ ∈ [10−9, 10−3], find whether initially circular orbits are chaotic for ε ∈ [10−2.5, 10−0.5],
and produce an image showing where in this parameter space the trajectories are chaotic.
Find, for each µ, the location of the innermost regular orbit εcrit. Plot εcrit as a function
of µ, and find the best power-law fit, εcrit = αµβ.

Question 8 Using Equation (10), find the critical semi-major axis at which first order
resonances overlap.
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