1 Numerical Methods
1.1 Fourier Transforms of Bessel Functions (6 units)

This project assumes only material contained in Part IA and Part IB core courses. Other
than that, the project is self contained (although the Part II courses on Numerical Analysis,
Further Complex Methods and Asymptotic Methods may provide relevant but non-essential
background).

1 Introduction

Bessel’s equation of order n is the linear second-order equation

2%y + xy + (2 —n?)y = 0. (1)

Bessel functions of the first kind are solutions of (1) which are finite at = 0. They are usually
written Jy,(x).

Question 1 Investigate (1) for n = 0, 1, 4 using a Runge-Kutta (or similar) method
commencing the integration for a strictly positive value of x and a number of different
values of y and y’ of your choice. You may employ a library routine to solve (1); for
example if using MATLAB you can employ the built-in ode45 routine. Integrate forwards
and backwards in x for a few such initial conditions, plotting y. Describe what you
observe, and illustrate any notable behaviour using appropriate plots.

Now try starting at x = 0. What happens, and why?

Question 2 The series solution for J,(x) is

X 1\ ll‘ 2r+n
Jn(z) = % (2)

r=0

Write a program to sum a truncation of this series. Plot J,(x) for n =0, 1, 4 for a range
of x, e.g., for 0 < = < 100. Discuss your choice of truncation, and identify a range of x
for which this summation method is not accurate and explain why.

2 The Discrete Fourier Transform

The Fourier Transform E(k) of a function F(z) may be defined as

F(k) = o F(z)exp(—2mikz) dx. (3)

—0o0

If F(z) is a function which is only appreciably non-zero over a limited range of z, say 0 < x < X,
then it is possible to approximate F'(k) by means of finite sums. Suppose

F.=F(rAz) for r=0,...,(N—1), where Az=X/N. (4)

An approximation to (3), known as the Discrete Fourier Transform (DFT), is

x Nl

T~ — 2mwi /N

f.S:N EOFTWNTS’ where wy = 2™/ (5)
—

July 2025/Part II/1.1 Page 1 of 4 © University of Cambridge

The ezact inverse of (5) is
L Nl
Fr= z%}'szNS. (6)
S=

In order to deduce the relationship between the F, and F(k), we first note from (5) that F
represents values of the Fourier Transform spaced by the “wavenumber” interval Ak, where

Ak=1/X. (7)
Also F, is periodic in s with period N; this corresponds to a “wavenumber” periodicity
K =NAk=N/X =1/Ax. (8)

Now it is to be expected that (5) will fail to approximate to (3) when the exponential function
oscillates significantly between sample points, that is when

1
> =1
K2 or =} (9
This, together with its periodicity, suggests that F, will be related to F (k) by
, F(sAk =0,....,sN -1
fs g ~ (S) S 17 ’ 2 Y (10)
F(sAk—K) s=4N,...,N—1.
Thus (6) is an approximation to
+K/2
F(x) = / F (k) exp(2mikx) dk. (11)
—K/2

Because of the periodicity, the F, are usually thought of as a series with s =0,..., N — 1, the
upper half being mentally re-positioned to correspond to negative “wavenumber”. Note that if
F(x) is real, and * denotes a complex conjugate, then

F(k) = F*(—k). (12)

Question 3 Carefully discuss under what limiting conditions for both N and X (pos-
sibly after a suitable change in origin in), does the DFT tend to the Fourier Transform?

3 The Fast Fourier Transform

The Fast Fourier Transform (FFT) method provides an efficient way to evaluate the DFT. This
method involves effcient evaluation of sums of the form

N-—1
A= mwf®, s=0,...,.N-1, o=x1, (13)
r=0

where N is an integer and the p, are a known sequence. The “fast” in FFT requires N to be
a power of a small prime, or combination of small primes; for simplicity we will assume that
N =2M,

A Dbrief outline of the FFT method is given in the Appendix. However, it is not necessary to
understand the implementation details, since you may use the one-dimensional Fast Fourier
Transform function fft in MATLAB, SCIPY, NUMPY, or an equivalent routine in any other
package. Alternatively you may write your own routine (however do not simply compute the
series (5) and (6); you will not receive credit if you do not use the FFT method.).

Note that the £ft algorithm will work for any value of N, but the performance (in terms of
compute time) is best when N is a power of 2.

July 2025/Part I1/1.1 Page 2 of 4 © University of Cambridge

4 Fourier Transforms of Bessel Functions

Question 4 Show analytically that if F'(z) is a real even function and

X +X
L = / F(z)exp(—2mikz) dx , I, = / F(z)exp(—2mikz) dx, (14a)
0 -X

then
Im(lz) =0, Re(I2) = 2Re(11). (14b)

With the definitions of §2 and §3, the FFT algorithm is ideally suited to approximating
I rather than Is. Hence if an approximation to I is desired, an approximation to Iy
could first be calculated, and then the relations (14b) could be used. If this procedure for
calculating I» is adopted, and Fy # Fy, explain why Fj should be replaced by %(Fg +Fyn)
before calculating the DFT. What is the equivalent result to (14b) if F'(x) is a real odd
function?

Question 5 Using a FFT code, and the results of question 4, find numerically the
Fourier Transform of J,,(x):

Jn (k) = /+OO JIn(x) exp (—2mikz) dx . (15)

—00

Compare it with the theoretical formula
Tn(k) = 2(=i)"(1 — 4x2k>) "2 T, (27k), (16)

where T),(u) is the Chebyshev polynomial of order n defined by

() = cosnf, p=-cosl; (17)
"o, luf > 1.

To obtain J,(x), you may either devise a method of your own (e.g., a combination of
questions 1 and 2), or you may use the MATLAB procedure besselj or a similar function
from another package.

You should obtain results for n = 0, 1, 2, 4, and 8. Choose sufficient points in the
transform to adequately resolve the functions.

Plots of J,(z) for a few representative values of n should be included in your write-up.
You should also include plots of J, and 7, on the same graph. Choose a range of k which
allows you to see the detailed behaviour in the interval —1 < 7wk < 1.

Comment on your results and discuss their accuracy. Discuss how the FFT deals with
any values of k which might be expected from the theoretical result to give problems. You
should also describe the effects of varying N and X; in particular you should systemat-
ically examine how the numerical errors change as N and/or X are varied, e.g. in the
light of your answer to question 3.

You should also find a way to demonstrate from your computational results how the
execution time necessary to calculate the transform varies with IV, and how this compares
with the theoretical prediction. Hint: given the speed of current computers, timing a
single run of your program is likely to be dominated by start/end overheads.

July 2025/Part II/1.1 Page 3 of 4 © University of Cambridge

Appendix: The Fast Fourier Transform

The Fast Fourier Transform (FFT) technique is a quick method of evaluating sums of the form
N—1

A= pswfi?, r=0,...,N—1, o= =+1, (18)
s=0

where N is an integer, u, is a known sequence and wy = e2™/N. The “fast” in FFT depends
on N being a power of a small prime, or combination of small primes; for simplicity we will
assume that N = 2M. Write

Ap ¢ g, rs=0,...,N—1 (19)
to denote that (18) is satisfied. Introduce the half-length transforms

M g
’ H2 rs=0,... N1 (20)
>"r S M2s+1

then it may be shown that

Ar = A +wfA?

or)\O
T

1
Mo = AF o7 } r=0,...,AN 1. (21)

Hence if the half-length transforms are known, it costs %N products to evaluate the A,.

To execute an FFT, start from N vectors of unit length (i.e., the original ps). At the sth stage,
s=1,2,..., M, assemble 25 vectors of length 2° from vectors of length 2571 — this “costs”
oM=s %(25) =oM-1 — %N products for each stage. The complete discrete Fourier transform
has been formed after M stages, i.e., after O(%NlogQ N) products. For N = 1024 = 219, say,
the cost is ~ 5 x 10® products, compared to ~ 10% products in naive matrix multiplication.

A description and short history of the FFT are given in Chapter 12 of the book Numerical
Recipes by Press et al.

July 2025/Part II/1.1 Page 4 of 4 © University of Cambridge

