
12 Nonlinear Dynamics/Dynamical Systems

12.3 The Lorenz Equations (10 units)

Some familiarity with the Part II course Dynamical Systems would be helpful for this project,
which is concerned with bifurcations and chaos in ordinary differential equations.

1 The Lorenz equations

The Lorenz equations are named after the meteorologist who first studied them in 1963:

ẋ(t) = f1(x, y, z) = 10(y − x) ,
ẏ(t) = f2(x, y, z) = rx− y − xz ,
ż(t) = f3(x, y, z) = xy − 8z/3 .

Question 1 Integrate the equations for values of r = 0, 14, 20 and 28 Use x = y = 1,
z = r−1 as the initial conditions. You may use any standard integrating packages that are
available and enable you to choose an appropriate step-length and then fix on it; comment
however on the effect of changing the step-length and why you chose your particular value.
You should plot x(t) against z(t) to show your results. For some of the above values of r
consider plotting the solution only for t > T for some time T > 0; why can this be useful?

A stationary point is a point (x, y, z) where ẋ = ẏ = ż = 0. It is (locally) stable if all the
eigenvalues of the Jacobian matrix Df(x) = (∂fi/∂xj)1⩽i,j⩽3 evaluated at the stationary point
have negative real part.

Question 2 Investigate analytically the existence and stability of stationary points of
the flow. How do these results relate to the behaviour observed in question 1 above?

2 The strange attractor

The persistent erratic non-periodic oscillations seen when r = 28 are due to the existence of a
“strange attractor” in the flow. (The existence of this attractor was discovered numerically by
Lorenz but there is still no completely rigorous proof that it exists and has the properties we
are about to study). This attractor is stable for (approximately) r > 24.06, but for r < 24.06
some solutions spend a long time wandering about near it before eventually tending towards
a stable stationary point. (It exists, but is unstable, for approximately 13.9236 < r < 24.06.)
This phenomenon is known as intermittency.

Question 3 For various initial conditions as given in the following list, plot x(t)
against t at r-values of your choice in 23 < r < 25: in each case include in your write-up
one or two plots showing the different possible behaviours.

(i) Start very close to the origin (0, 0, 0) but not on the z-axis (why not?).

(ii) Start very close to one of the other fixed points.

(iii) Start near x = y = 1, z = r − 1.
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Which type of initial condition is best suited for deciding the r-value at which the strange
attractor becomes attracting? Which is useful to confirm your stability analysis for the
stationary points obtained in question 2 above? Which best illustrates intermittency?

Question 4 For initial conditions which produce trajectories displaying intermittent
behaviour in r < 24.06, plot the time spent wandering erratically before the trajectory
spirals steadily into one of the stationary points against (24.06 − r). You should decide
on some criterion for deciding the time tc at which the solution you are calculating starts
heading towards a stable stationary point, and calculate the average of the values of tc
obtained for 5 different initial conditions (all of which should display several “erratic”
oscillations before tc is reached) at each r-value. Explain how you determine tc.

You will find that nearby initial conditions sometimes give very different values of tc, and as r
increases towards 24.06 you may find that it becomes increasingly difficult to find tc for all of
your chosen initial conditions; you should start with r = 20 and be prepared to stop increasing
r when the amount of machine time used becomes excessive.

Question 5 Suggest a formula for the way in which the average tc value increases
with r. You will need a fairly large sample of tc values to make a reasonable estimate.

Question 6 For r = 27, write a program to record the successive z-values z1, z2,
z3, . . . at which a trajectory achieves a local maximum in z. Plot these on a scatter
diagram of zn+1 against zn; include also for reference the diagonal line zn+1 = zn. What
property do portions of the trajectory which generate high points (large values of zn+1)
on this diagram have? Does the information that the origin (0, 0, 0) is actually part of
the strange attractor help you to find a numerical method to compute (approximately)
the largest value of zn+1 that could appear on this diagram? If so, do it and add an
appropriate point to your figure.

You should not plot the first few points obtained from any given trajectory in order to give any
transient behaviour time to die out. You may generate points from many trajectories or from
one long trajectory. You will observe that the points on this scatter diagram all lie very near
to a certain curve C, which can therefore be used as a predictor for the successive zi values.

Question 7 Describe in some detail the chief features of this curve and how they
relate to your numerical solutions. In particular, consider the following points:

� The intersections of C with the diagonal.

� Does C intersect the diagonal at z = r − 1?

� On your diagram, is it possible to draw a square whose top-right and bottom-left
corners lie on the diagonal, whose top side touches the peak of C, whose bottom-right
corner lies on C, but whose bottom edge does not otherwise intersect C?

Question 8 On a copy of your diagram, draw an approximation to the curve C and use
this hand-drawn curve (which you should include in your write-up) to predict a succession
of zi values. For how many steps does your prediction agree well with an actual sequence
produced by the numerically computed trajectory? Are there any features of the curve
which would lead you to expect this result?
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3 The effect of varying r

Question 9 How does the curve C vary as r decreases? Draw the curves for = 24.4
and 23.1, extending them in a sensible way to z = r − 1. (For r = 23.1 you will need
to use initial conditions which give intermittent trajectories in order to generate much of
the curve). Describe how the features of the curve change, and explain how these changes
relate to the other aspects of behaviour studied in this project.
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