11 Statistical Physics

11.3 Classical gases with a microscopic (8 units)
thermometer

This project can be done with knowledge of the course Statistical Physics.

1 Introduction

Consider a gas of N non-interacting classical particles. The momentum of the ¢th particle is p;
and its kinetic energy is E;. The energy E, of the gas is

To this system we add one additional degree of freedom, which acts as a thermometer. The
thermometer stores energy, and can exchange it with the gas. The energy of the thermometer is
E4 and the total energy E = E, + E4 is conserved (we consider the microcanonical ensemble).
We will show that measuring the average value of E; can be used to infer the temperature of
different kinds of classical gas.

2 Algorithm

We use a stochastic (random) algorithm to calculate the statistical behaviour of this system.
This is an example of a Monte Carlo algorithm. It operates as follows:

1. As an initial configuration, set p; = e; for all 4, where e; is a unit vector in the z-direction.
Initialise also E4; = 0.

2. Choose one of the N particles at random and compute its current energy FEeu. Generate
a random vector Ap and propose a change of the particle’s momentum, from p; to p; +Ap.
A good choice is to take each component of the vector Ap to be a random number from
(—e,e) with e = 0.1. Compute the energy that the particle would have if its momentum
was p; + Ap: this is the proposed energy Eprop.

3. Define AE = Epyrop — Eeurr. If AE < Ej then accept the change. That is, update the
momentum of particle i to a new value p; + Ap, and update Ey to a new value By — AFE.
If AF > E,; then the change is rejected and no variables are updated.

4. Whether or not the change was accepted, record the value of E; as a new value in an
array (or list) which will later be used to plot a histogram. Also record the energy of
the particle. (This is called the single-particle energy.) If the change was accepted, you
should record these values after the update was performed.

5. Repeat steps 2-4 until the total number of attempted updates is Nypdates- Since each
update only affects one particle, it is useful to define Nyweeps = Nupdates/N 80 that Nweeps
is the typical number of times that each particle has been chosen for an update.
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Question 1 In the microcanonical ensemble each microstate (of the whole system) is
equally likely. For the thermometer, suppose that every possible value of E; corresponds
to a single microstate. Hence explain why the probability distribution for E; behaves as

P(Eq) x Qq(Ey) .

where 4(E,) gives the number of microstates of the gas.

Question 2 The temperature of the gas is related to its entropy as
1 98,
T 0E,’

Assuming that E; < Ey, use this fact to show that

PE) o (~n) 1)

where kg is Boltzmann’s constant. [It is also acceptable to take kg = 1.]

3 Ideal gas

Programming Task: Write a program to simulate a gas of N particles using the Monte
Carlo algorithm outlined above. Consider a 3-dimensional gas of nonrelativistic particles,
so p = (p1,p2,p3) and
B(p) = L.
2

You will need to keep track of the momentum vectors for the N particles in the gas. It will
be useful in later questions if your program includes a function which returns the particle
energy, given p as input.

You will also need to plot histograms of the quantities that were recorded in step 4 of
the algorithm: the value of E; and the single-particle energy. Remember, a histogram is
a graph of the relative frequency that a quantity such as Ej; lies within a particular bin.
This relative frequency is f(FEy).

Your program should also calculate the average of Ej.

Throughout this project, should compare your results with the behaviour that you would expect
from the theory of statistical physics. The results should be presented in such a way that this
comparison is clear.

Question 3 For N = 100, plot a histogram of E; for Ngyeeps = 10,100, 1000. [You may
wish to plot log f(Ey) instead of f(Ey).] Your program should not take more than a few
minutes to run. Discuss (and explain) the results, including the dependence on Ngyeeps-
Do the results depend on the parameter ¢ that appears in step 2 of the algorithm?

Question 4 If Ngweeps is large enough, the system should be in an equilibrium state.
For this case, compare the histogram of E; with Equation (1), and estimate the tempera-
ture of the gas. If the distribution of E; is consistent with (1), you can also estimate the
temperature from the average of E;. Quantify the numerical uncertainties on these two
estimates of the temperature.
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Question 5 For the equilibrium state, plot a histogram of the single-particle energy.
Show that the result is consistent with the theory of ideal gases from statistical physics.

Programming Task: Modify your program so that each particle is initialised with a
randomly assigned momentum (instead of all starting with p; = e;). For example, assign
each component of p; independently at random from (—a,a), with a = 1.

(Note: depending on a, you may want to change the parameter € that appears in step 2
of the algorithm.)

Question 6 How does this change in initial conditions affect the histograms of Ejy
and the single-particle energy? What happens for different values of a? How does the
temperature depend on a? Explain your observations, including their consistency with
the theory of ideal gases from statistical physics.

(Note: depending on a, you may want to change the parameter € that appears in step 2
of the algorithm.)

4 Relativistic gases

Programming Task: Continue with random initial conditions [each component of p;
chosen independently at random from (—a,a)]. Modify your program to consider ultra-
relativistic particles that move in two dimensions: this means that p is a vector with two
components and that

E=|p|.

(For the purposes of statistical physics, we still refer to this system as a classical gas,
because quantum mechanical effects have been neglected.)

Question 7 For a = 1, compute and plot histograms of F4 and of the single particle
energy. Estimate the temperature of the gas. Vary a and compute the temperature. Plot
this temperature as a function of the total energy of the system. Compare the result
with the case considered in question 5 (non-relativistic particles in three dimensions), and
discuss their consistency with the theory of ideal gases from statistical physics.

Programming Task: Consider relativistic particles in three dimensions so that p is a
vector with three components, and

E(p)=+1+][p*—-1.

Question 8 Consider different values of the total energy by varying a in the range
0.1 to 2.0. How does the temperature depend on the total energy? By considering the
behaviour of E(p) for large and small values of |p|, comment on the relation of this result
to the cases from previous questions. Compare the histograms of single-particle energies
for a few representative cases.

July 2025/Part I11/11.3 Page 3 of 3 © University of Cambridge



