

11 Statistical Physics

11.3 Classical gases with a microscopic thermometer (8 units)

This project can be done with knowledge of the course Statistical Physics.

1 Introduction

Consider a gas of N non-interacting classical particles. The momentum of the i th particle is \mathbf{p}_i and its kinetic energy is E_i . The energy E_g of the gas is

$$E_g = \sum_{i=1}^N E_i.$$

To this system we add one additional degree of freedom, which acts as a thermometer. The thermometer stores energy, and can exchange it with the gas. The energy of the thermometer is E_d and the total energy $E = E_g + E_d$ is conserved (we consider the microcanonical ensemble). We will show that measuring the average value of E_d can be used to infer the temperature of different kinds of classical gas.

2 Algorithm

We use a stochastic (random) algorithm to calculate the statistical behaviour of this system. This is an example of a Monte Carlo algorithm. It operates as follows:

1. As an initial configuration, set $\mathbf{p}_i = \mathbf{e}_1$ for all i , where \mathbf{e}_1 is a unit vector in the x -direction. Initialise also $E_d = 0$.
2. Choose one of the N particles at random and compute its *current* energy E_{curr} . Generate a random vector $\Delta\mathbf{p}$ and propose a change of the particle's momentum, from \mathbf{p}_i to $\mathbf{p}_i + \Delta\mathbf{p}$. A good choice is to take each component of the vector $\Delta\mathbf{p}$ to be a random number from $(-\varepsilon, \varepsilon)$ with $\varepsilon = 0.1$. Compute the energy that the particle would have if its momentum was $\mathbf{p}_i + \Delta\mathbf{p}$: this is the *proposed* energy E_{prop} .
3. Define $\Delta E \equiv E_{\text{prop}} - E_{\text{curr}}$. If $\Delta E \leq E_d$ then accept the change. That is, update the momentum of particle i to a new value $\mathbf{p}_i + \Delta\mathbf{p}$, and update E_d to a new value $E_d - \Delta E$. If $\Delta E > E_d$ then the change is rejected and no variables are updated.
4. Whether or not the change was accepted, record the value of E_d as a new value in an array (or list) which will later be used to plot a histogram. Also record the energy of the particle. (This is called the *single-particle energy*.) If the change was accepted, you should record these values *after* the update was performed.
5. Repeat steps 2-4 until the total number of attempted updates is N_{updates} . Since each update only affects one particle, it is useful to define $N_{\text{sweeps}} = N_{\text{updates}}/N$ so that N_{sweeps} is the typical number of times that each particle has been chosen for an update.

Question 1 In the microcanonical ensemble each microstate (of the whole system) is equally likely. For the thermometer, suppose that every possible value of E_d corresponds to a single microstate. Hence explain why the probability distribution for E_d behaves as

$$P(E_d) \propto \Omega_g(E_g).$$

where $\Omega_g(E_g)$ gives the number of microstates of the gas.

Question 2 The temperature of the gas is related to its entropy as

$$\frac{1}{T} = \frac{\partial S_g}{\partial E_g}.$$

Assuming that $E_d \ll E_g$, use this fact to show that

$$P(E_d) \propto \exp\left(-\frac{E_d}{k_B T}\right). \quad (1)$$

where k_B is Boltzmann's constant. [It is also acceptable to take $k_B = 1$.]

3 Ideal gas

Programming Task: Write a program to simulate a gas of N particles using the Monte Carlo algorithm outlined above. Consider a 3-dimensional gas of nonrelativistic particles, so $\mathbf{p} = (p_1, p_2, p_3)$ and

$$E(\mathbf{p}) = \frac{|\mathbf{p}|^2}{2}.$$

You will need to keep track of the momentum vectors for the N particles in the gas. It will be useful in later questions if your program includes a function which returns the particle energy, given \mathbf{p} as input.

You will also need to plot histograms of the quantities that were recorded in step 4 of the algorithm: the value of E_d and the single-particle energy. Remember, a histogram is a graph of the relative frequency that a quantity such as E_d lies within a particular bin. This relative frequency is $f(E_d)$.

Your program should also calculate the average of E_d .

Throughout this project, should compare your results with the behaviour that you would expect from the theory of statistical physics. The results should be presented in such a way that this comparison is clear.

Question 3 For $N = 100$, plot a histogram of E_d for $N_{\text{sweeps}} = 10, 100, 1000$. [You may wish to plot $\log f(E_d)$ instead of $f(E_d)$.] Your program should not take more than a few minutes to run. Discuss (and explain) the results, including the dependence on N_{sweeps} . Do the results depend on the parameter ε that appears in step 2 of the algorithm?

Question 4 If N_{sweeps} is large enough, the system should be in an equilibrium state. For this case, compare the histogram of E_d with Equation (1), and estimate the temperature of the gas. If the distribution of E_d is consistent with (1), you can also estimate the temperature from the average of E_d . Quantify the numerical uncertainties on these two estimates of the temperature.

Question 5 For the equilibrium state, plot a histogram of the single-particle energy. Show that the result is consistent with the theory of ideal gases from statistical physics.

Programming Task: Modify your program so that each particle is initialised with a randomly assigned momentum (instead of all starting with $\mathbf{p}_i = \mathbf{e}_1$). For example, assign each component of \mathbf{p}_i independently at random from $(-a, a)$, with $a = 1$.

(Note: depending on a , you may want to change the parameter ε that appears in step 2 of the algorithm.)

Question 6 How does this change in initial conditions affect the histograms of E_d and the single-particle energy? What happens for different values of a ? How does the temperature depend on a ? Explain your observations, including their consistency with the theory of ideal gases from statistical physics.

(Note: depending on a , you may want to change the parameter ε that appears in step 2 of the algorithm.)

4 Relativistic gases

Programming Task: Continue with random initial conditions [each component of \mathbf{p}_i chosen independently at random from $(-a, a)$]. Modify your program to consider ultra-relativistic particles that move in two dimensions: this means that \mathbf{p} is a vector with two components and that

$$E = |\mathbf{p}| .$$

(For the purposes of statistical physics, we still refer to this system as a classical gas, because quantum mechanical effects have been neglected.)

Question 7 For $a = 1$, compute and plot histograms of E_d and of the single particle energy. Estimate the temperature of the gas. Vary a and compute the temperature. Plot this temperature as a function of the total energy of the system. Compare the result with the case considered in question 5 (non-relativistic particles in three dimensions), and discuss their consistency with the theory of ideal gases from statistical physics.

Programming Task: Consider relativistic particles in three dimensions so that \mathbf{p} is a vector with three components, and

$$E(\mathbf{p}) = \sqrt{1 + |\mathbf{p}|^2} - 1 .$$

Question 8 Consider different values of the total energy by varying a in the range 0.1 to 2.0. How does the temperature depend on the total energy? By considering the behaviour of $E(\mathbf{p})$ for large and small values of $|\mathbf{p}|$, comment on the relation of this result to the cases from previous questions. Compare the histograms of single-particle energies for a few representative cases.