Recent developments in the area of the so-called *integrable nonlinear* Partial Differential Equations (PDEs) have led to the emergence of a new method for solving boundary value problems, which is usually referred to as the *Unified Transform* (UT).

The UT will be implemented to:

(a) Linear evolution PDEs in one spatial variable formulated either on the half-line or on a finite interval. Examples include the heat equation and the Stokes equation (linearised version of the KdV).

(b) Linear elliptic PDEs in two spatial variables formulated in the interior of a convex polygon. Examples include the Laplace, the modified Helmholtz, and the Helmholtz equations.

For the above problems, in addition to presenting integral representations of the solution, simple numerical techniques for the effective computation of the solution will also be introduced.

Pre-requisites

The course only requires some elementary knowledge of complex analysis.

Literature

Additional support

Three examples sheets will be provided and three associated examples classes will be given.