Soft Condensed Matter refers to liquid crystals, emulsions, molten polymers and other microstructured fluids or semi-solid materials. Alongside many high-tech examples, domestic and biological instances include mayonnaise, toothpaste, engine oil, shaving cream, and the lubricant that stops our joints scraping together. Their behaviour is classical ($\hbar = 0$) but rarely is it deterministic: thermal noise is generally important.

The basic modelling approach therefore involves continuous classical field theories, generally with noise so that the equations of motion are stochastic PDEs. The form of these equations is helpfully constrained by the requirement that the Boltzmann distribution is regained in the steady state (when this indeed holds, i.e. for systems in contact with a heat bath but not subject to forcing). Both the dynamical and steady-state behaviours have a natural expression in terms of path integrals, defined as weighted sums of trajectories (for dynamics) or configurations (for steady state). These concepts will be introduced in a relatively informal way, focusing on how they can be used for actual calculations.

In many cases mean-field treatments are sufficient, simplifying matters considerably. But we will also meet examples such as the phase transition from an isotropic fluid to a ‘smectic liquid crystal’ (a layered state which is periodic, with solid-like order, in one direction but can flow freely in the other two). Here mean-field theory gets the wrong answer for the order of the transition, but the right one is found in a self-consistent treatment that lies one step beyond mean-field (and several steps short of the renormalization group, whose application to classical field theories is discussed in other courses but not this one).

Important models of soft matter include diffusive $\phi^4$ field theory (‘Model B’), and the noisy Navier-Stokes equation which describes fluid mechanics at colloidal scales, where the noise term is responsible for Brownian motion of suspended particles in a fluid. Coupling these together creates ‘Model H’, a theory that describes the physics of fluid-fluid mixtures (that is, emulsions). We will explore Model B, and then Model H, in some depth. We will also explore the continuum theory of nematic liquid crystals, which spontaneously break rotational but not translational symmetry, focusing on topological defects and their associated mathematical structure such as homotopy classes.

Finally, the course will cover some recent extensions of the same general approach to systems whose microscopic dynamics does not have time-reversal symmetry, such as self-propelled colloidal swimmers. These systems do not have a Boltzmann distribution in steady state; without that constraint, new field theories arise that are the subject of ongoing research.

Pre-requisites

Knowledge of Statistical Mechanics at an undergraduate level is essential. This course complements the following Michaelmas Term courses although none are prerequisites: Statistical Field Theory; Biological Physics and Complex Fluids; Slow Viscous Flow; Quantum Field Theory.

Preliminary Reading

1. D. Tong *Lectures on Statistical Physics*

   [http://www.damtp.cam.ac.uk/user/tong/statphys.html](http://www.damtp.cam.ac.uk/user/tong/statphys.html)
Before embarking on this course you do need to understand the equation $F = -k_B T \ln Z$ and its implications. This includes knowing what the Boltzmann distribution is, what it describes, and when it is true. You should also have met the concept of chemical potential and the grand canonical ensemble. Familiarity with the Landau theory of phase transitions is highly desirable. We will not need much abstract thermodynamics (e.g., Maxwell relations) but you do need to know the zeroth, first and second laws. These lecture notes are an excellent resource for revising and reviewing the key material.


This set of lecture notes addresses only one part of the course (emulsions); it goes into more depth in that area than we will, but with more words and significantly less mathematics. It takes fluid mechanics as its starting point whereas we will start from statistical physics and bring in fluid mechanics when needed. Despite all this, these notes would make useful preliminary reading and gives an idea of the types of problem we will address.

**Literature**

I am not aware of any books that treat this material at the right level. But it may be worth looking at:

1. P. Chaikin and T. C. Lubensky *Principles of Condensed Matter Physics.* Cambridge University Press, 1995. An authoritative and broad ranging but advanced book, that is worth dipping into to see how hydrodynamics, broken symmetries, topological defects all feature in the description of condensed matter systems at $\hbar = 0$. More for inspiration than information though; this course may help you in understanding the book, but probably not vice versa.

**Additional support**

Three examples sheets will be provided and three associated examples classes will be given. There will also be a two-hour revision class in the Easter Term.