Distribution Theory and Applications (M16)

A.C.L. Ashton

This course will give an introduction to the theory of distributions and its application to the study of linear PDEs. We aim to make mathematical sense of objects like the Dirac delta function and find out how to meaningfully take the Fourier transform of a polynomial. The course will focus on the use of distributions, rather than the functional-analytic foundations of the theory.

First we will cover the basic definitions for distributions and related spaces of test functions. Then we will look at operations such as differentiation, translation, convolution and the Fourier transform. We will look at the Sobolev spaces $H^s(\mathbb{R}^n)$ and $H^s_{loc}(X)$ and their description in terms of the Fourier transform of tempered distributions. Time permitting, the material that follows will address questions such as

- What does a generic distribution look like?
- Why are solutions to Laplace’s equation always infinitely differentiable?
- Which functions are the Fourier transform of a distribution?

i.e. structure theorems, elliptic regularity, Paley-Wiener-Schwartz. In the final part of the course we will study Hörmander’s oscillatory integrals.

Pre-requisites

Elementary concepts from undergraduate real analysis. Some knowledge of complex analysis would be advantageous (e.g. the level of IB Complex Analysis/Methods). No knowledge of functional analysis is assumed.

Preliminary Reading

Literature

Additional support

Three examples sheets will be provided and three associated examples classes will be given. Model solutions will be made available.