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1

Let X1, . . . , Xn be independent and identically distributed random variables
with distribution function F : R → [0, 1]. Define the empirical distribution function
Fn : R → [0, 1]. Define the (standard) Brownian bridge G and the F -Brownian bridge
process GF . Carefully state Donsker’s central limit theorem for Fn − F .

Assuming that F is continuous, use Donsker’s central limit theorem to prove that

√
n sup

t∈R

|Fn(t) − F (t)| →d max
t∈ [0,1]

|G(t)|

n → ∞ . [You may use the continuous mapping theorem for convergence in distribution
in metric spaces.]

Explain how this result can be used to construct an asymptotic confidence band for
F centered at Fn.

2

Let X1, . . . , Xn be independent and identically distributed random variables with
probability density function f : R → [0,∞). Define the kernel density estimator f K

n (x, h)
of f with bandwidth h.

What is a kernel of order l? Let {φm}m∈N be the orthonormal basis of Legendre
polynomials defined by

φ0(x) := 2−1/2 , φm(x) =

√

2m + 1

2

1

2m m!

dm

dxm
[(x2 − 1)m]

for x ∈ [−1, 1] and m ∈ N . Using these polynomials (or otherwise), construct a kernel of
order l. [You may use standard properties of spaces of polynomials in your answer.]

Suppose f is three times differentiable and that f and D3f are bounded functions.
Devise a kernel K and a bandwidth hn depending on n such that for every x ∈ R

E
∣

∣fK
n (x, h) − f(x)

∣

∣ 6 Cn−
3

7

for some constant C independent of n. Give an example of a probability density function
f : R → [0,∞) for which

E
∣

∣fK
n (x, h) − f(x)

∣

∣ 6 Cn−
1

2

for every x ∈ R .
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If m : R → R is a function for which
∫

R
(m(x))2 dx < ∞ , and if φ and ψ are the

generating functions of a wavelet basis, define carefully the wavelet series and the wavelet
projection of m.

Considering random variables Yi, design points xi and a regression function m,
define the fixed design regression model. For design points xi = i/n , define the wavelet
regression estimator of m. By analogy to the wavelet thresholding density estimator,
argue how one could implement a thresholded wavelet regression estimator, and motivate
a reasonable choice of thresholds.

4

Let S be a normed space with norm ‖ · ‖S , and let Φ be a real-valued mapping
defined on S. Define the notion of Hadamard-differentiability of Φ at a point s0 ∈ S. Let
rn be real numbers diverging to infinity and let Xn be random variables taking values in S

such that rn(Xn − s0) converges in distribution to some random variable X taking values
in S as n → ∞ . Derive the asymptotic distribution of

rn(Φ(Xn) − Φ(s0))

as n → ∞ . [You may use Skorohod’s almost sure representation theorem in the proof,
provided it is carefully stated.]

Suppose now Φ : L∞ → R is Hadamard differentiable on the space L∞ of bounded
real-valued functions defined on R equipped with the supremum norm
‖f‖∞ = sup t∈R |f(t)| . Suppose you are given a random sample from some unknown
distribution function F : R → [0, 1]. Construct an estimator Tn for Φ(F ) such that√

n(Tn − Φ(F )) is stochastically bounded, that is, for every ε > 0 there exists n0 :=
n0(ε) ∈ N and M := M(ε) finite such that Pr(

√
n(Tn − Φ(F )) 6 M) > 1 − ε for every

n > n0. [You may use Donsker’s central limit theorem in the answer.]

END OF PAPER
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