M. PHIL. IN STATISTICAL SCIENCE

Wednesday, 3 June, 2009 1:30 pm to 3:30 pm

NONPARAMETRIC STATISTICAL THEORY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

2

1 Suppose $X_1, ..., X_n$ are independent and identically distributed random variables with cumulative distribution function $F : \mathbb{R} \to \mathbb{R}$. Define the *empirical distribution* function F_n of the sample.

Given two (measurable) real-valued functions l, u on \mathbb{R} , a *bracket* is the set of functions $[l, u] := \{f : \mathbb{R} \to \mathbb{R} : l(x) \leq f(x) \leq u(x) \text{ for all } x \in \mathbb{R}\}$. Suppose \mathcal{H} is a class of measurable functions from \mathbb{R} to \mathbb{R} such that, for every $\varepsilon > 0$, there exist $N(\varepsilon) < \infty$ brackets $[l_i, u_i]_{i=1}^{N(\varepsilon)}$ that satisfy the following conditions: i) for every $i, E|l_i(X)| < \infty$, $E|u_i(X)| < \infty, E|u_i(X) - l_i(X)| < \varepsilon$, and ii) for every $h \in \mathcal{H}$ there exists i with $h \in [l_i, u_i]$. Prove the uniform law of large numbers

$$\sup_{h \in \mathcal{H}} \left| \frac{1}{n} \sum_{i=1}^{n} (h(X_i) - Eh(X)) \right| \to 0 \quad almost \quad surely$$

as $n \to \infty$.

Deduce from the above result that

$$\sup_{t \in \mathbb{R}} |F_n(t) - F(t)| \to 0 \quad almost \quad surely$$

as $n \to \infty$.

Furthermore, give an example of a class \mathcal{H} of continuous functions $h : \mathbb{R} \to \mathbb{R}$ with uncountably many elements for which the uniform law of large numbers holds. [You may use results from functional analysis, such as the Ascoli-Arzela theorem, in the justification.]

2 Given an independent and identically distributed sample $X_1, ..., X_n$ from the probability density function $f : \mathbb{R} \to \mathbb{R}$, define, for $x \in \mathbb{R}$, the kernel density estimator $f_n^K(x,h)$ with bandwidth h > 0 and kernel K. Discuss briefly a motivation for this estimator.

Suppose that f is differentiable on \mathbb{R} with bounded derivative and that $h = h_n$ satisfies $nh_n^3 \to 0$ as $n \to \infty$. Assume that the kernel $K : \mathbb{R} \to \mathbb{R}$ is a nonnegative, bounded and compactly supported function. Prove that, for every $x \in \mathbb{R}$,

 $\sqrt{nh_n}(f_n^K(x,h_n) - f(x)) \to^d N(0,f(x) ||K||_2^2)$

as $n \to \infty$, where $||K||_2^2 = \int_{\mathbb{R}} K^2(x) dx$. [You may assume the Lindeberg-Feller central limit theorem, provided it is carefully stated.]

Suppose you are given the quantiles of the $N(0, f(x) ||K||_2^2)$ distribution. Describe how to construct a confidence interval for f(x) of asymptotic coverage $1 - \alpha$, based on the above limit theorem.

UNIVERSITY OF

3 What is the *wavelet series* of a square-integrable function $f : \mathbb{R} \to \mathbb{R}$? How can it be used to approximate the function?

Considering the Haar wavelet, denote by $K_j(f)$ the projection (with respect to the inner product $\langle f, g \rangle = \int_{\mathbb{R}} f(x)g(x)dx$) of a locally integrable function $f : \mathbb{R} \to \mathbb{R}$ onto the space V_j of functions that are piecewise constant on the intervals $(k/2^j, (k+1)/2^j]$, $k \in \mathbb{Z}$. Prove that, if $f : \mathbb{R} \to \mathbb{R}$ is bounded and differentiable with a bounded derivative, then there exists a constant c independent of j and x such that $|K_j(f)(x) - f(x)| \leq c2^{-j}$ for every $x \in \mathbb{R}$.

Suppose you are given a sample of independent and identically distributed random variables $X_1, ..., X_n$ with common probability density function $f : \mathbb{R} \to \mathbb{R}$, where f is differentiable with bounded derivative. How can you use wavelets to estimate f? Show that one can construct a density estimator $f_n^W(x)$ based on Haar wavelets such that the pointwise risk satisfies $E|f_n^W(x) - f(x)| = O(n^{-1/3})$.

4 Suppose you are given n independent and identically distributed copies of the random vector (X, Y) with joint probability density function f(x, y), marginal density for X given by f^X and suppose m(x) = E(Y|X = x). Define, for $x \in \mathbb{R}$, the Nadaraya-Watson estimator $\hat{m}_n(h, x)$ based on the kernel K and bandwidth h.

Again, let $x \in \mathbb{R}$ and suppose m(x) is bounded and twice continuously differentiable at x, that the conditional variance function $V(x) = \operatorname{Var}(Y|X = x)$ is bounded on \mathbb{R} and continuous at x, and that f^X is bounded, continuous on \mathbb{R} , continuously differentiable at x, and satisfies $f^X(x) > 0$. Suppose further that the kernel is $K(x) = 1_{[-1/2,1/2]}(x)$. If $h = h_n \simeq n^{-1/5}$, prove that

$$E|\hat{m}_n(h_n, x) - m(x)| = O(n^{-2/5})$$

as $n \to \infty$. [You may use in the proof the auxiliary result that

$$E(|\hat{m}_n(h_n, x) - m(x)| 1\{\hat{f}_n^X(x) \le \delta\}) = o(n^{-2/5})$$

for some $\delta > 0$, where $\hat{f}_n^X(x) = (nh_n)^{-1} \sum_{i=1}^n K((x - X_i)/h_n)$. You may use further that the ordinary kernel density estimator satisfies $E(f^X(x) - \hat{f}_n^X(x))^2 = o(1)$ as $n \to \infty$.]

END OF PAPER