

M. PHIL. IN STATISTICAL SCIENCE

Thursday, 28 May, 2009 9:00 am to 11:00 am

INTRODUCTION TO PROBABILITY

Attempt no more than **THREE** questions.

There are **FIVE** questions in total.

The questions carry equal weight.

 $STATIONERY\ REQUIREMENTS$

 $\begin{array}{c} \textbf{SPECIAL} \ \textbf{REQUIREMENTS} \\ None \end{array}$

Cover sheet Treasury Tag Script paper

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

(a) State and prove the central limit theorem. [You may use without proof the fact that

$$\lim_{n \to \infty} (1 + c_n/n)^n = e^c$$

if $(c_n)_{n\geqslant 0}$ is a sequence of complex numbers such that $c_n\to c$ as $n\to\infty$, and any other result of the course].

- (b) Let (X_1, \ldots, X_n) be independent and identically distributed exponential random variables with parameter $\lambda > 0$. Let $M = \min(X_1, \ldots, X_n)$. Show that the distribution of M is that of an exponential random variable, with a parameter that you should identify.
- (c) Let (X_1, \ldots, X_n) be as in (b). Define M_1, \ldots, M_n inductively by saying $M_1 = M$, and for $1 \le i \le n-1$:

$$M_{i+1} = \min\{X_j : 1 \le j \le n, X_j > M_i\}.$$

Show that if $1 \leq i \leq n$, M_i has the same distribution as

$$\frac{Y_n}{n} + \frac{Y_{n-1}}{n-1} + \ldots + \frac{Y_{n-i+1}}{n-i+1}.$$

where Y_1, \ldots, Y_n are also independent and identically distributed exponential random variables with parameter λ . [Hint: Reason by induction. Use the memoryless property of exponential random variables together with (b).]

Deduce the mean, variance and Laplace transform of

$$M^* = \max(X_1, \dots, X_n).$$

2 Let $(\theta_1, \theta_2, ...)$ be a sequence of independent and identically distributed random variables such that

$$\mathbb{P}(\theta_1 = 1) = 1/2; \quad \mathbb{P}(\theta_1 = -1) = 1/2.$$

Fix $X_0 = x \in \mathbb{R}$ an arbitrary nonrandom number, and for any a > 0, define a sequence of random variables (X_1, X_2, \ldots) through the following recursive equation:

$$X_{n+1} = aX_n + \theta_{n+1}, \quad n \geqslant 0.$$

- (a) Assume that a = 1 and x = 0. This process has been studied in class: what is its name, and what can you say about the asymptotic behaviour of X_n as $n \to \infty$?
- (b) Assume now that a > 0 and $x \in \mathbb{R}$. Proceeding by induction, compute $\mathbb{E}(X_n)$.
- (c) Assume that a > 1. Show that if the absolute value of the starting point |x| is chosen large enough, then $\lim_{n\to\infty} |X_n| = \infty$, almost surely.

[Hint: Prove that if |x| is large enough, the sequence X_n is monotone almost surely.] Conclude that $\lim_{n\to\infty} |X_n| = \infty$ almost surely, no matter what the starting point x is.

3

- (a) Define the notion of martingale. What does it mean to say that a martingale is bounded in L^2 ? State and prove the optional stopping theorem for bounded stopping times.
- (b) Let $(X_n, n \ge 0)$ be a Markov chain on a finite state space S. Let D be a subset of S, and let

$$T = \inf \{ n \geqslant 0 : X_n \in D \}.$$

Assume that $T < \infty$, \mathbb{P}_x -almost surely for all $x \in S$, and that there is a function $f: S \to \mathbb{R}$ and a number $\delta > 0$ such that for all $x \in S$, and for all $n \ge 0$,

$$\mathbb{E}\left(f(X_{n+1})|X_n=x\right) = f(x) - \delta,$$

and for all $x \in D$, f(x) = 0. Show that the process $Y_n = f(X_n) + n\delta$, $n \ge 0$, defines a martingale in an appropriate filtration, and use this to show that

$$\mathbb{E}_x\left(T\right) = \frac{f(x)}{\delta}$$

for all starting points $x \in S$.

(c) Fix $q \in (1/2,1)$ and $N \ge 2$. Let $X = (X_n, n \ge 0)$ be a Markov chain on

$$S = \{ \dots, -1, 0, 1, \dots, N-1, N \},\$$

such that if $x \in S$, p(x, x - 1) = 1 - p(x, x + 1) = q if x < N, and p(x, x - 1) = 1 if x = N. You may assume without proof that X is transient.

Let $T = \inf\{n \ge 0 : X_n = 0\}$ be the hitting time of 0. Show that for every $x \in \{1, 2, ...\}$,

$$\mathbb{E}_{N}(T) = \frac{N+2q-2}{2q-1}.$$

[Hint: consider the function f defined by f(x) = x for x < N, and f(N) = N + c, and apply the result from (b) by choosing a suitable c.]

4

(a) Let $(S_n, n \ge 0)$ be a simple random walk on \mathbb{Z} . Let $a, b \in \mathbb{N}$ with a, b > 0, and for all $x \in \mathbb{Z}$, let $T_x = \inf\{n \ge 0 : S_n = x\}$. Prove that

$$\mathbb{P}_0(T_{-a} < T_b) = \frac{b}{a+b}$$

and that

$$\mathbb{E}_0(T_{-a} \wedge T_b) = ab.$$

(You may use freely in your proof that S_n and $S_n^2 - n$ are martingales in the canonical filtration, as well as any other result of the course you wish.)

(b) Fix $N \ge 1$ and let $\lambda_1, \ldots, \lambda_{N-1}$ be (N-1) fixed positive numbers. Let $(X_t, t \ge 0)$ be a Markov chain in continuous time on $S = \{0, \ldots, N\}$, whose generator is given by the matrix $Q = (q_{i,j})_{0 \le i,j \le N}$, where

$$q_{i,i} = -\lambda_i, \quad q_{i,i+1} = q_{i,i-1} = \frac{\lambda_i}{2}, \quad 1 \leqslant i \leqslant N-1,$$

and all the other entries are 0. Assuming that the chain starts at $X_0 = i \in S$, let J_i be the amount of time that X stays at i before jumping to a different state. What is the distribution of J_i ? What can you say about X_{J_i} , the next state visited by the chain? (Distinguish between the cases 0 < i < N and the boundary cases i = 0 or i = N.)

Show that with probability 1, eventually the chain gets absorbed either at state i = 0 or i = N. Let E be the event that the chain gets absorbed at 0. What is $\mathbb{P}_i(E)$, for $i \in S$?

(c) Let $(E_1, E_2, ...,)$ be independent and identically distributed random variables with exponential distribution with rate $\lambda > 0$, and let K be an independent random variable with geometric distribution with parameter $0 . Compute <math>\mathbb{E}(S)$, where S is the random variable defined by:

$$S = \sum_{n=1}^{K} E_n. \tag{1}$$

Fix 0 < i < N, and let I be the total time spent by the chain $(X_t, t \ge 0)$ of part (b) at state i. Show that

$$\mathbb{E}_i(I) = \frac{2i(N-i)}{N\lambda_i}.$$

[Hint: Show that I may be expressed as a random variable of the form of (??), and use appropriate versions of the result in (a) to identify the parameters].

- 5 Let $\lambda > 0$ and let Z be a Poisson random variable with parameter λ .
 - (a) Compute the probability generating function $\mathbb{E}(s^Z)$ of Z, for $s \in [0,1]$.

Give a definition of the Poisson process $(N_t, t \ge 0)$ with rate $\lambda > 0$. Show that the law of N_t for some fixed time t > 0 is Poisson with some parameter which you should specify.

Deduce that if s < t, then $N_t - N_s$ is a Poisson random variable with mean $\lambda(t - s)$.

(b) Let $(X_i, i \ge 1)$ be independent and identically distributed random variable with a fixed given distribution such that $X_1 \ge 0$ almost surely, which are independent from Z. For $q \ge 0$, we denote by $\phi(q) = \mathbb{E}(e^{-qX_1})$ the Laplace transform of the distribution of X_1 . Compute the Laplace transform of the random variable Y defined by:

$$Y = \sum_{i=1}^{Z} X_i.$$

Express your answer in terms of the function ϕ . How can you use your answer to compute $\mathbb{E}(Y)$? Find another method to compute this expectation and check that the two methods give the same result.

(c) Let $(N_t, t \ge 0)$ be a Poisson process with rate λ . Let

$$Y_t = \sum_{i=1}^{N_t} X_i,$$

where (X_1, \ldots) are as in (b). Show that for all $q \ge 0$, the process $(Z_t, t \ge 0)$ defined by:

$$Z_t = \exp(-qY_t - \lambda t\phi(q) + \lambda t)$$

is a martingale, in the sense that $\mathbb{E}(|Z_t|) < \infty$ for all $t \ge 0$ and for all s < t,

$$\mathbb{E}(Z_t|\mathcal{F}_s) = Z_s$$

where $\mathcal{F}_s = \sigma(Y_u, u \leqslant s)$.

[Hint: show that Z_t/Z_s is independent of \mathcal{F}_s .]

END OF PAPER