

M. PHIL. IN STATISTICAL SCIENCE

Monday 2 June 2008 9.00 to 12.00

ADVANCED FINANCIAL MODELS

Attempt no more than **FOUR** questions.

There are **SIX** questions in total.

The questions carry equal weight.

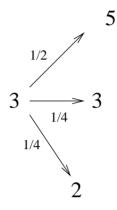
 $STATIONERY\ REQUIREMENTS$

Cover sheet Treasury Tag Script paper $\begin{array}{c} \textbf{SPECIAL} \ \textbf{REQUIREMENTS} \\ None \end{array}$

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

- Consider a one-period two-asset market model $(B_t, S_t)_{t \in \{0,1\}}$, where $B_t > 0$.
 - (i) What is an arbitrage strategy?
 - (ii) What is an equivalent martingale measure?
 - (iii) Show that there is no arbitrage if there exists an equivalent martingale measure.

Now consider the following model. Suppose that asset 0 is cash, so that $B_0 = B_1 = 1$. Asset 1 is a stock with price modelled by



(The diagram should be read $S_0 = 3$ and $\mathbb{P}(S_1 = 5) = 1/2$, etc., where \mathbb{P} is the objective probability measure.)

Now introduce a call option with strike 4 maturing at time 1.

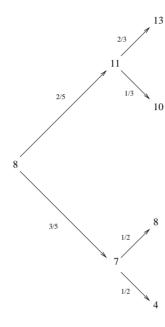
- (iv) Find an arbitrage strategy in the case that the time-0 price of this option is 1/2.
- (v) What are the possible time-0 prices of this option such that the market has no arbitrage?
- **2** Let $(B_t, S_t)_{t \in \mathbb{Z}_+}$ be a model of an arbitrage-free financial market with two assets, where $B_t > 0$.
 - (i) What does it mean to say that the market is complete?
- (ii) Show that if the market is complete, the equivalent martingale measure is unique.

Now suppose the market is complete, and that $B_{t+1} \geq B_t$ for all $t \in \mathbb{Z}_+$. Let C(T, K) be the time-0 price of a European call option with strike K and maturity T.

(iii) Show that $T\mapsto C(T,K)$ is increasing, and that $K\mapsto C(T,K)$ is decreasing and convex.

- **3** (i) What does it mean to say the process $(U_t)_{t\in\mathbb{Z}_+}$ is a supermartingale?
- (ii) Let $(U_t)_{t \in \mathbb{Z}_+}$ be a supermartingale and τ a stopping time. Show that the process $(U_{t \wedge \tau})_{t \in \mathbb{Z}_+}$ is a supermartingale.

Let $(\xi_t)_{t \in \{0,1,2\}}$ be as follows



where the above diagram should be read as

$$\mathbb{P}(\xi_1 = 11) = 2/5$$
, $\mathbb{P}(\xi_2 = 13|\xi_1 = 11) = 2/3$, etc.

- (iii) Show that $\mathbb{E}(\xi_{\tau}) \leq 9$ for every stopping time τ .
- (iv) Find a stopping time τ_0 such that $\mathbb{E}(\xi_{\tau_0}) = 9$.

4 Consider a Black–Scholes market with two assets whose dynamics are given by

$$dB_t = B_t \ r \ dt$$

$$dS_t = S_t(\mu \ dt + \sigma dW_t).$$

(i) Show the density process $(Z_t)_{t\in\mathbb{R}_+}$ of the equivalent martingale measure is of the form

$$Z_t = e^{-\lambda^2 t/2 - \lambda W_t}$$

for a parameter λ to be determined

Now introduce a European claim maturity at time T with payout $\xi = \max\{K, S_T\}$.

- (ii) Find a no-arbitrage price process $(\xi_t)_{t\in[0,T]}$ such that $\xi_T=\xi$.
- (iii) Find the replicating strategy $(\pi_t)_{t \in [0,T]}$ for the claim.

5 Consider a Markovian market model with two assets whose risk-neutral dynamics are given by

$$dB_t = B_t r dt$$

$$dS_t = S_t(r dt + \sigma(S_t)d\hat{W}_t)$$

for given a continuous function $\sigma: \mathbb{R}_+ \to \mathbb{R}_+$ and a Brownian motion $(\hat{W}_t)_{t \in \mathbb{R}_+}$.

(i) Introduce a European contingent claim with maturity T and payout $\xi = g(S_T)$, where $g: \mathbb{R}_+ \to \mathbb{R}_+$ is bounded and continuous. Show that there is no arbitrage in the augmented market $(B_t, S_t, \xi_t)_{t \in [0,T]}$ if

$$\xi_t = V(t, S_t)$$

and $V:[0,T]\times\mathbb{R}_+\to\mathbb{R}_+$ satisfies the partial differential equation

$$\frac{\partial V}{\partial t}(t,S) + rS\frac{\partial V}{\partial S}(t,S) + \frac{1}{2}\sigma(S)^2 S^2 \frac{\partial^2 V}{\partial S^2}(t,S) = rV(t,S)$$
$$V(T,S) = g(S).$$

- (ii) How can the replicating portfolio π_t be calculated in terms of the function V?
- (iii) Now specialize to the case where r=0, $\sigma(S)=S^{-1/2}$, and $g(S)=e^S$, and T=1. By making the substitution $V(t,S)=e^{A(t)S+B(t)}$, find the time-t option price in this model.

6 Let $(r_t)_{t\in\mathbb{R}_+}$ be an interest rate process modelled by

$$r_t = g(t) + \sigma \hat{W}_t$$

where $(\hat{W}_t)_{t\in\mathbb{R}_+}$ is a Brownian motion for the unique equivalent martingale measure, the function $g:\mathbb{R}_+\to\mathbb{R}$ is given, and $\sigma>0$ is constant.

- (i) Compute the bond prices $P_t(T)$ and the forward rates $f_t(T)$ for this model.
- (ii) Show that one can choose the function g in such a way as to exactly match any time-0 forward rate curve $f_0(\cdot)$.

END OF PAPER