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1 Write an essay on optimal hedging in the least-squares sense in a one-period
financial model. Your essay should cover the notions of attainable claims, dominated
and equivalent martingale measures, the minimal martingale measure and a proof of the
fact that the model is complete if and only if there is a unique dominated martingale
measure. [20]

2 Consider the standard binomial model operating over the times 0, 1, . . . , n (n > 2)
where the stock price at time r is denoted by Sr. Let gr (Sr) represent the price at time r
of a claim which pays f (Sn) at time n. When f is convex show that gr is convex on the
possible values that Sr can take on (viz. Sr = S0u

idr−i, i = 0, 1, . . . , r). [6]

Show that when f is convex then the amount of stock held in the hedging portfolio
increases between the times r and r + 1 (< n) if the stock price increases between r and
r + 1. [8]

Now consider an investor who has initial wealth w0 > 0, at time 0, and utility
function v(x) = γx1/γ , for x > 0, where γ > 1; determine the claim that he would
purchase in order to maximize the expected utility of his final wealth. [6]

3 Let Ta,b denote the first hitting time of the line a + bs by a standard Brownian
motion, where a > 0 and −∞ < b < ∞ and let Ta = Ta,0 represent the first hitting time
of the level a.

For θ > 0, using the fact that E
(
e−θTa

)
= e−a

√
2θ or otherwise, derive an expression

for E
(
e−θTa,b

)
for each b, −∞ < b < ∞. [8]

Hence, or otherwise, show that, for t > 0,

P (Ta,b 6 t) = e−2abΦ
(

bt− a√
t

)
+ 1− Φ

(
a + bt√

t

)
,

where Φ is the standard normal distribution function. [6]

Use this result, in the context of the Black–Scholes model, to derive the price at
time 0 of a barrier digital put which pays 1 at time t0 if and only if the stock price stays
below a predetermined barrier c > S0 between times 0 and t0, where S0 is the initial price
of the stock. [6]
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4 Suppose that in the Black–Scholes model, the stock price at time t is St, the fixed
interest rate is ρ and the volatility is σ. Let p(St, t) be the price at time t of a claim
paying C = f(St0) at time t0; explain carefully why the function p = p(x, t) satisfies the
Black–Scholes equation

1
2
σ2x2 ∂2p

∂x2
+ ρx

∂p

∂x
+

∂p

∂t
− ρp = 0. [12]

Now suppose that in addition to paying C at time t0 the claim pays a dividend at
rate Rt = k(St, t) at time t. Explain how the Black–Scholes equation for the price of the
claim p(St, t) should be modified in this case. Justify your answer carefully. [8]

5 For the Black–Scholes model, give a description of the pricing of a terminal-value
claim paying the amount f (St0) at time t0, where {St, t > 0} is the stock price process.
You may assume that f is a twice-differentiable function and your account should include
a verification that the price satisfies the Black–Scholes equation as well as an analysis of
its dependence on the various parameters of the model. [16]

In particular, show that if f is convex and the replicating portfolio is short in bonds
(that is, it holds a negative amount) then the price is a decreasing function of time. [4]

6 Write an essay on modelling interest rates with Gaussian random fields. You need
not include detailed proofs of results but you should outline how they are obtained. [20]

END OF PAPER
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