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Attempt THREE questions. There are FOUR questions in total.
Marks for each question are indicated on the paper in square brackets.

Each question is worth a total of 20 marks.
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1 (a) Consider two discrete random variables X and Y . Define the conditional entropy
h(X|Y ), and show that it satisfies

h(X|Y ) 6 h(X),

giving necessary and sufficient conditions for equality. You may assume the Gibbs
inequality, provided that you state it carefully. [8]

(b) Consider two discrete random variables U and V with corresponding probability
mass functions pU and pV . For each α ∈ [0, 1], define the mixture random variable W (α)
by its mass function

pW (α)(x) = αpU (x) + (1− α)pV (x).

Prove that for all α the entropy of W (α) satisfies:

h(W (α)) > αh(U) + (1− α)h(V ). [6]

(c) Define F (λ) to be the entropy of a Poisson random variable with mean λ > 0.
Show that F (λ) is a non-decreasing function of λ > 0. [6]

2 State the Entropy Power Inequality for n-dimensional random vectors. [4]

Let X be a real-valued random variable with a density and finite differential entropy,
and let function g : R → R have strictly positive derivative g′ everywhere. Prove that the
random variable g(X) has differential entropy satisfying

h(g(X)) = h(X) + E log2 g′(X),

assuming that E log2 g′(X) is finite. [7]

Let Y1 and Y2 be independent, strictly positive random variables with densities.
Show that the differential entropy of the product Y1Y2 satisfies

22h(Y1Y2) > α122h(Y1) + α222h(Y2),

where log2(α1) = 2E log2 Y2 and log2(α2) = 2E log2 Y1. [9]
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3 (a) Prove the Hamming and Gilbert–Varshamov bounds on the size of a binary code
of length N and minimum distance δ, in terms of vN (d), the volume of an N -dimensional
Hamming ball of radius d. [8]

Suppose that the minimum distance is bλNc for some fixed λ ∈ (0, 1/2). Describe
the asymptotic behaviour of both of the above bounds as N →∞.

[You may assume that

lim
N→∞

1
N log vN (bλNc) = h(λ),

where h is the binary entropy function].

(b) State Shannon’s Second Coding Theorem, giving the capacity of a general
memoryless channel. Use this to calculate the capacity of a memoryless binary symmetric
channel with error probability p. [7]

(c) Fix R ∈ (0, 1) and suppose we want to send one of a collection UN of messages of
length N , where the size |UN | = 2NR. The message is transmitted through a memoryless
binary symmetric channel with error probability p < 1/2, so that we expect about pN
errors. According to the asymptotic Gilbert–Varshamov bound of part (a), for which
values of p can we correct pN errors, for large N? Why does this give a different answer
to the Shannon capacity of part (b)? [5]

4 Prove that the binary code of length 23 generated by the polynomial g(X) =
1 + X + X5 + X6 + X7 + X9 + X11 has minimum distance 7, and is perfect.

[You may use the BCH theorem without proof provided it is clearly stated, and you
may assume that X23 + 1 ≡ (X + 1)g(X)grev(X) mod 2, where grev(X) = X11g(1/X) is
the reversal of g(X).] [20]
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