

M. PHIL. IN STATISTICAL SCIENCE

Monday 5 June 2006 1.30 to 4.30

STATISTICAL THEORY

Attempt **FOUR** questions, not more than **TWO** of which should be from Section B. There are **TEN** questions in total. Marks for each question are indicated on the paper in square brackets. Each question is worth a total of 20 marks.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Section A

1 Let X_1, \ldots, X_n be independent and identically distributed random variables with distribution function F. Define the empirical distribution function \hat{F}_n . State and prove the Glivenko–Cantelli theorem. [10]

Define the *p*th sample quantile $\hat{F}_n^{-1}(p)$. Subject to a smoothness condition which you should specify, write down the asymptotic distribution of the sample median, $\hat{F}_n^{-1}(1/2)$. [3]

In each of the two cases below, compare the asymptotic variance of $n^{1/2} \hat{F}_n^{-1}(1/2)$ with that of $n^{1/2} \bar{X}_n$, where $\bar{X}_n = n^{-1}(X_1 + \ldots + X_n)$:

- (i) $F = \Phi$, the standard normal distribution function [3]
- (ii) *F* has density f(x) = 6x(1-x) for $x \in (0,1)$. [4]

2 Let Y_1, \ldots, Y_n be independent and identically distributed with model function $f(y;\theta)$, where $\theta \in \Theta \subseteq \mathbb{R}^d$, and let θ_0 denote the true parameter value. Derive the asymptotic distribution of the maximum likelihood estimator $\hat{\theta}_n$. [8]

[You may assume that the usual regularity conditions hold. In particular, you may assume a Taylor expansion for the score function $U(\theta)$, of the form

$$0 = U(\hat{\theta}_n) = U(\theta_0) - j(\theta_0)(\hat{\theta}_n - \theta_0) + o_p(n^{1/2}),$$

as $n \to \infty$, where $j(\theta)$ is the observed information matrix at θ .]

Describe how this asymptotic result is related to the Wald test of $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$. Now suppose that $\theta = (\psi, \lambda)$, where only ψ is of interest. Describe the Wald test of $H_0: \psi = \psi_0$ against $H_1: \psi \neq \psi_0$. [4]

Let Y_1, \ldots, Y_n be independent and identically distributed with the inverse Gaussian density

$$f(y;\psi,\lambda) = \left(\frac{\psi}{2\pi y^3}\right)^{1/2} \exp\left\{-\frac{\psi}{2\lambda^2 y}(y-\lambda)^2\right\}, \quad y > 0, \psi > 0, \lambda > 0.$$

Show that the maximum likelihood estimator of ψ is

$$\hat{\psi} = \left\{\frac{1}{n}\sum_{i=1}^{n} \left(\frac{1}{Y_i} - \frac{1}{\bar{Y}}\right)\right\}^{-1},$$

where $\bar{Y} = n^{-1}(Y_1 + \ldots + Y_n)$.

Using the fact that $\mathbb{E}_{\psi,\lambda}(Y_1) = \lambda$, show further that the Wald statistics for testing $H_0: \psi = \psi_0$ against $H_1: \psi \neq \psi_0$ coincide in the two cases where λ is known and where λ is unknown. [4]

Statistical Theory

[4]

3 Let X_1, \ldots, X_n be independent and identically distributed with distribution function F, and let $X_{(n)} = \max_i X_i$. If G is a non-degenerate distribution function, what does it mean for F to belong to the domain of attraction D(G) of G? What does it mean for G to be max-stable? Prove that D(G) is non-empty if and only if G is max-stable. [7]

[You may assume that if (F_n) is a sequence of distribution functions satisfying $F_n(a_nx+b_n) \xrightarrow{d} G_1(x)$ as $n \to \infty$ and $F_n(\alpha_nx+\beta_n) \xrightarrow{d} G_2(x)$, for non-degenerate G_1, G_2 , then $G_1(x) = G_2(ax+b)$, for some $a \in (0, \infty), b \in \mathbb{R}$.]

Let $F(x) = 1 - 1/(x \log x)$ for $x > x_0$, where $x_0 \log x_0 = 1$. By quoting a result about regular variation, or otherwise, find a non-degenerate distribution function G such that $F \in D(G)$. Give expressions for constants $a_n > 0$ and b_n such that, for all $x \in \mathbb{R}$,

$$\mathbb{P}\Big(\frac{X_{(n)} - b_n}{a_n} \leqslant x\Big) \to G(x),$$

as $n \to \infty$.

By writing down an equation satisfied by $F(a_n)$, show first that there exists $n_0 \in \mathbb{N}$ such that $a_n < n$ for $n \ge n_0$. Show further that $a_n > n/\log n$ for $n \ge n_0$, and finally that

$$a_n < \frac{n}{\log n - \log \log n}$$

for $n \ge n_0$. Deduce that, for all $x \in \mathbb{R}$,

$$\mathbb{P}\Big(\frac{X_{(n)}\log n}{n} \leqslant x\Big) \to G(x)$$
[9]

as $n \to \infty$.

4 Write an essay on exponential families, which should include the following:

(i) The definition of a full natural exponential family of order p

(ii) A calculation of the moment generating function of a random variable Y with density in full natural exponential family form, and of expressions for the mean vector and covariance matrix of Y

(iii) The general definition of an exponential family of order p, and of a (p,q) curved exponential family, together with an example of the latter

(iv) An explanation of the existence and uniqueness of maximum likelihood estimators in regular natural exponential families. [20]

Statistical Theory

[TURN OVER

[4]

5 Let f be a bounded density with a bounded, continuous second derivative f'' satisfying $\int_{-\infty}^{\infty} f''(x)^2 dx < \infty$, and let X_1, \ldots, X_n be independent and identically distributed with density f. Define the kernel density estimator $\hat{f}_h(x)$ with kernel K and bandwidth h. Under conditions on h and K which you should specify, derive the leading term of an asymptotic expansion for the bias of $\hat{f}_h(x)$ as a point estimator of f(x). [10]

Observing that $\operatorname{Var}\{\hat{f}_h(x)\} = (nh)^{-1}R(K)f(x) + o\{1/(nh)\}$, where $R(K) = \int_{-\infty}^{\infty} K(z)^2 dz$, and provided that $f''(x) \neq 0$, find the bandwidth $h_{AMSE}(x)$ which minimises the asymptotic mean squared error of $\hat{f}_h(x)$ at the point x. Write down (or compute) the asymptotically optimal mean integrated squared error bandwidth, h_{AMISE} . [3]

For $f(x) = \phi(x)$, the standard normal density, show that

$$\inf_{x \in \mathbb{R} \setminus \{-1,1\}} \frac{h_{AMSE}(x)}{h_{AMISE}} = \left(\frac{9e^5}{8192}\right)^{1/10}.$$
[7]

[You may find it helpful to note that $R(\phi'') = \frac{3}{8\sqrt{\pi}}$.]

6 Let $g: (a,b) \to \mathbb{R}$ be a smooth function with a unique minimum at $\tilde{y} \in (a,b)$ satisfying $g''(\tilde{y}) > 0$. Sketch a derivation of Laplace's method for approximating

$$g_n = \int_a^b e^{-ng(y)} \, dy.$$
^[7]

[You may treat error terms informally. An explicit expression for the $O(n^{-1})$ term is not required.]

By making an appropriate substitution, use Laplace's method to approximate

$$\Gamma(n+1) = \int_0^\infty y^n e^{-y} \, dy.$$
 [7]

Let $p(\theta)$ denote a prior for a parameter $\theta \in \Theta \subseteq \mathbb{R}$, and let Y_1, \ldots, Y_n be independent and identically distributed with conditional density $f(y|\theta)$. Explain how Laplace's method may be used to approximate the posterior expectation of a function $g(\theta)$ of interest. [6]

4

Statistical Theory

5

Section B

7 Consider the linear regression

 $Y = X\beta + \epsilon$

where Y is an n-dimensional observation vector, X is an $n \times p$ matrix of rank p, and ϵ is an n-dimensional vector with components $\epsilon_1, \ldots, \epsilon_n$. Here, $\epsilon_1, \ldots, \epsilon_n$ are normally and independently distributed, each with mean zero and variance σ^2 ; we write this as $\epsilon \sim N_n(0, \sigma^2 I_n)$.

(a) Define $Q(\beta) = (Y - X\beta)^T (Y - X\beta)$. Find an expression for $\hat{\beta}$, the least squares estimator for β and state without proof the joint distribution of $\hat{\beta}$ and $Q(\hat{\beta})$. [10]

(b) Define $\hat{\epsilon} = Y - X\hat{\beta}$. Find the distribution of $\hat{\epsilon}$. [6]

(c) Suppose
$$\beta^T = (\beta_1^T : \beta_2^T)$$
. How would you test $H_0 : \beta_2 = 0$? [4]

8 Suppose that we have independent observations Y_1, \ldots, Y_n and that we assume the model

 $\omega: Y_i$ is Poisson, parameter μ_i and $\log(\mu_i) = \beta_0 + \beta_1 x_i$,

where x_1, \ldots, x_n are given scalar covariates.

(a) Find the equations for the maximum likelihood estimators $\hat{\beta}_0, \hat{\beta}_1$ and state without proof the approximate distribution of $\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1)^T$. [9]

(b) How is the deviance for ω calculated? If you found that this deviance took the value 32.4, where n = 35, what would you conclude? [5]

(c) Discuss briefly how your answers to the above would change if the model ω is replaced by the model [6]

$$\omega':\mu_i=\beta_0+\beta_1x_i.$$

9 Write an account, with appropriate examples of the decision theory approach to inference. Your account should include discussion of *all* of the following:

(i) the main elements of a decision theory problem;

- (ii) the Bayes and minimax principles;
- (iii) admissibility;
- (iv) finite decision problems;
- (v) decision theory approaches to point estimation and hypothesis testing.

(Proofs of results are not expected.)

Statistical Theory

TURN OVER

[20]

10 Write an account of the main results in the frequentist (Neyman-Pearson) theory of optimal hypothesis testing. Your account should include discussion of all of the following:

- (i) size of a test;
- (ii) Neyman-Pearson lemma;
- (iii) Uniformly most powerful tests; and
- (iv) unbiased tests.

(Proofs of results are not expected.)

[20]

END OF PAPER

Statistical Theory