

M. PHIL. IN STATISTICAL SCIENCE

Thursday 2 June 2005 1.30 to 4.30

STATISTICAL THEORY

Attempt **FOUR** questions, not more than **TWO** of which should be from Section B. There are **TEN** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Section A

1 Explain briefly the concepts of *profile likelihood* and *conditional likelihood*, for inference about a parameter of interest ψ , in the presence of a nuisance parameter λ .

Suppose Y_1, \ldots, Y_n are independent, identically distributed from the exponential family density

$$f(y;\psi,\lambda) = \exp\{\psi\tau_1(y) + \lambda\tau_2(y) - d(\psi,\lambda) - Q(y)\},\$$

where ψ, λ are both scalar.

Obtain a saddlepoint approximation to the density of $S = n^{-1} \sum_{i=1}^{n} \tau_2(Y_i)$.

Show that use of the saddle point approximation leads to an approximate conditional log-likelihood function for ψ of the form

$$l_p(\psi) + B(\psi),$$

where $l_p(\psi)$ is the profile log-likelihood, and $B(\psi)$ is an adjustment which you should specify carefully.

2 Explain in detail what is meant by a *transformation model*.

What is meant by (i) a *maximal invariant*, (ii) an *equivariant estimator*, in the context of a transformation model?

Describe in detail how an equivariant estimator can be used to construct a maximal invariant. Illustrate the construction for the case of a *location-scale* model.

STATISTICAL THEORY

3

3 Let Y_1, \ldots, Y_n be independent, identically distributed $N(\mu, \mu^2), \mu > 0$.

Show that this model is an example of a $\it curved$ $\it exponential$ $\it family,$ and find a minimal sufficient statistic.

Show that

$$a = \sqrt{n} \frac{(\sum Y_i^2)^{1/2}}{\sum Y_i}$$

is an ancillary statistic.

Assume that a > 0. Show that the maximum likelihood estimator of μ is

$$\hat{\mu} = \frac{(\sum Y_i^2)^{1/2}}{q\sqrt{n}},$$

where $q = \{(1+4a^2)^{1/2} + 1\}/(2a)$.

Show further that (apart from a constant) the log-likelihood may be written

$$l(\mu; \hat{\mu}, a) = -\frac{n}{2\mu^2} \left(q^2 \hat{\mu}^2 - \frac{2q\mu\hat{\mu}}{a} \right) - n\log\mu,$$

and obtain the p^* approximation to the (conditional) density of $\hat{\mu}$.

How would you approximate $\operatorname{Prob}(\hat{\mu} \leq t | a)$, for given t?

4 Explain what is meant by an *M*-estimator of a parameter θ , based on a given ψ function. Show that under appropriate conditions allowing the interchange of order of integration and differentiation, the influence function is proportional to ψ and derive an expression for the asymptotic variance $V(\psi, F)$ of the *M*-estimator at a distribution *F*.

A location model on \mathbb{R} , with parameter space \mathbb{R} , is specified by $F_{\theta}(x) = F(x - \theta)$, and an *M*-estimator is constructed using a ψ function of the form $\psi(x, \theta) = \psi(x - \theta)$.

For the particular choice

$$\psi(x) = \min\{b, \max\{x, -b\}\}, \quad b < \infty$$
:

(i) Find the asymptotic variance $V(\psi, \Phi)$, where Φ is the standard normal distribution;

(ii) Verify that the estimator is B-robust, by determining an explicit bound on the influence function.

STATISTICAL THEORY

[TURN OVER

5 Let Y_1, \ldots, Y_n be independent, identically distributed from a distribution F, with density f symmetric about an unknown point θ . Suppose we wish to test $H_0: \theta = \theta_0$ against $H_1: \theta < \theta_0$.

Explain how to test H_0 against H_1 using (i) the sign test, and (ii) the Wilcoxon signed rank test.

Show that the null mean and variance of the Wilcoxon signed rank statistic are $\frac{1}{4}n(n+1)$ and $\frac{1}{24}n(n+1)(2n+1)$ respectively.

What is meant by a one-sample U-statistic?

State, without proof, a result concerning the asymptotic distribution of a one-sample U-statistic, and use it to deduce asymptotic normality of the Wilcoxon signed rank statistic.

6 Write brief notes on *four* of the following:

- (i) Edgeworth expansion;
- (ii) parameter orthogonality;
- (iii) Laplace approximation;
- (iv) Bartlett correction;
- (v) the invariance principle;
- (vi) finite-sample versions of robustness measures;
- (vii) tests based on the empirical distribution function;
- (viii) large-sample likelihood theory.

STATISTICAL THEORY

 $\mathbf{5}$

Section B

7 Assume that the *n*-dimensional observation vector Y may be written

 $Y = X\beta + \epsilon,$

where X is a given $n \times p$ matrix of rank p, β is an unknown vector, and

$$\epsilon \sim N_n(0, \sigma^2 I).$$

Let $Q(\beta) = (Y - X\beta)^T (Y - X\beta)$. Find $\hat{\beta}$, the least-squares estimator of β , and show that

$$Q(\hat{\beta}) = Y^T (I - H) Y$$

where H is a matrix that you should define.

If now $X\beta$ is written as $X\beta = X_1\beta_1 + X_2\beta_2$, where $X = (X_1 : X_2), \beta^T = (\beta_1^T : \beta_2^T)$, and β_2 is of dimension p_2 , state without proof the form of the *F*-test for testing $H_0 : \beta_2 = 0$.

What is meant by saying that β_1 is orthogonal to β_2 ? What is the practical relevance of orthogonality?

8 Suppose that Y_1, \ldots, Y_n are independent binomial observations, with

$$Y_i \sim B(t_i, \pi_i)$$
 and $\log(\pi_i/(1 - \pi_i)) = \beta^T x_i$, for $1 \leq i \leq n$,

where t_1, \ldots, t_n and x_1, \ldots, x_n are given. Discuss carefully the estimation of β .

Your solution should include

(i) the method of checking the fit of the above logistic model,

and

(ii) the method for finding an approximate 95% confidence interval for β_2 , the second component of the vector β .

STATISTICAL THEORY

[TURN OVER

6

9 Write a brief account of Bayesian decision theory. Derive the general form of a Bayes rule, in terms of the posterior distribution and loss function.

Let X_1, \ldots, X_n , conditional on θ , be a random sample from a $N(\theta, \sigma^2)$ population and let the prior distribution on θ be $N(\mu, \tau^2)$, where the values of σ^2, μ and τ^2 are known. Consider testing $H_0: \theta \ge \theta_0$ against $H_1: \theta < \theta_0$, with loss function,

$$L(\theta, \text{accept } H_0) = \begin{cases} 0 & \text{if } \theta \ge \theta_0\\ 1 & \text{if } \theta < \theta_0 \end{cases}$$

and

$$L(\theta, \text{accept } H_1) = \begin{cases} 1 & \text{if } \theta \ge \theta_0 \\ 0 & \text{if } \theta < \theta_0 \end{cases}$$

Show that the Bayes test rejects H_0 if

$$\bar{x} < \theta_0 - \frac{\eta(\mu - \theta_0)}{1 - \eta},$$

where $\eta = \sigma^2/(n\tau^2 + \sigma^2)$ and $\bar{x} = n^{-1}\sum_{i=1}^n x_i$.

10 Let X_1, \ldots, X_n be independent identically distributed random variables, with joint density $f(x; \theta)$, where θ is a scalar parameter.

What is meant by the Fisher information $I_n(\theta)$ about θ contained in the sample X_1, \ldots, X_n ?

State the Cramer–Rao lower bound for the variance of an arbitrary unbiased estimator of θ . Give the condition for this lower bound to be attained.

Let X_1, \ldots, X_n be an independent, identically distributed sample of size $n \ge 3$ from the exponential density $\theta e^{-\theta x}$, x > 0, where $\theta > 0$ is unknown.

Obtain the maximum likelihood estimator $\hat{\theta}$ of θ . Show that it is biased, but a multiple of it is not. Determine whether the Cramer–Rao lower bound is attained by the variance of this unbiased estimator.

State carefully, but without proof, the asymptotic distribution of $\hat{\theta}$.

Explain in detail the rationale for the Wald test of the hypothesis $H_0: \theta = \theta_0$, and find the form of the test statistic for the above exponential example.

[*Hint: You may assume that the density of* $X_1 + \ldots + X_n$ *is* $\frac{\theta^n t^{n-1} e^{-\theta t}}{(n-1)!}$, t > 0.]

END OF PAPER

STATISTICAL THEORY