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Dolphin whistles form time-frequency contours that are complex, overlapping, and 
unpredictable [1]. These features make automatic detection, classification and 
localisation of whistles difficult and labour-intensive. However, all such whistles fall 
within a fixed range of time and frequency parameters [2]. It has previously been 
demonstrated that a dolphin whistle detector can be constructed in MATLAB using 
this information [3, 4] and it is hoped to build on the achievements of that project by 
identifying which of the thirty-three species of marine dolphins produced the whistle. 
The project will start with a brief literature search for dolphin whistle classification 
techniques and a review of the theory behind any that are found. Then it will proceed 
to collect and analyse a set of the previously recorded dolphin whistles available at 
various internet sites, to extract the time and frequency statistics and then to determine
the differences between a limited selection of species. Given this information, the 
main challenge in this project will be to develop a pattern recognition algorithm 
which identifies signals that match the specific set of parameters for a particular 
species, whilst rejecting interference such as ambient noise and transient sounds. This 
algorithm could be based on the previous MATLAB whistle detector [3], algorithms 
published in the literature, or could take an entirely new approach. Finally, the 
probability of detection and false alarm rate of the algorithm will be assessed using a 
different set of previously recorded whistles. 
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Project Accovion 
 
 
One of the main challenges in medical research is to demonstrate that a new 
therapy is at least as good, or possibly better than an already established 
standard. An example is to show that a generic formulation of a compound is as 
effective as the original medication. Such a claim is usually based on a clinical 
trial with hundreds or even thousands of patients in a large number of 
investigative sites or clinics.  
 
From a statistical perspective, this claim can be confirmed using a test for 
equivalence or non-inferiority of an experimental treatment compared to the 
reference treatment. In the frequentist framework commonly used in drug 
development, this test is based on a shifted null hypothesis of the risk difference.  
 
For single sites trials, the problem has been solved already by Farrington and 
Manning (1990). If the assumption of a single site trial is not met, methods to 
combine the data collected in a large number of investigative sites or clinics by 
means of a valid stratified test are needed. Although Newcombe (1998) 
developed a confidence interval for the stratified situation a corresponding 
statistical test has not been available yet. 
 
Accovion GmbH wants to evaluate whether such a corresponding statistical test 
exists, how this test can be constructed if possible and how it can be implemented 
in statistical software like R. Both analytical methods as well as heuristic 
approaches based on simulation or boot-strapping may be employed.  
 

     Contact: Mrs. Birgit Keller, Director Biostatistics,  
     Email: birgit.keller@accovion.com 
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Joint Modelling of Deformation and Template Maps of Cortical Surface Thickness of Bone 
 
This project will examine how to jointly model surfaces of data taken from scans of human femurs. 
Interest will be in how shape affects cortical thickness. By combining work based on applying 
constrained statistical models to surface data with work on applying joint statistical models for signal 
alignment in 1‐D, the aim of the project will be to produce statistical models which can combine 
information from both the data once available on a template and additionally the warping to put the 
data on the template in the first place. This will require the combinations of a number of techniques 
including functional data analysis and finite element methods for surface discretisation, as well as an 
understanding on the underlying deformation process. The final analysis will be applied to a large 
data set of femur bones, allowing insight into cortical thickness variation, which has considerable 
implications in understanding fracture risk. 
 
Jointly supervised by Andrew Gee (Engineering), Graham Treece (Engineering) and John Aston 
(Statslab). 



Compressed Sensing of Helium Atom Scattering Spectra 

Supervisor: Bill Allison, Surfaces, Microstructure and Fracture Group, Cavendish Laboratory 

The project would be based on a recent paper titled "Continuous Compressed Sensing of Inelastic 

and Quasielastic Helium Atom Scattering Spectra" 

http://www.damtp.cam.ac.uk/research/afha/anders/CS4HAS_Arxiv_2.pdf.  

Basically, I would implement the Compressed Sensing techniques that are presented in this paper, 

applied to the study of the dynamical behaviour of surfaces on an atomic level. The computational 

side would be done on MATLAB. 

http://www.damtp.cam.ac.uk/research/afha/anders/CS4HAS_Arxiv_2.pdf


Modelling and simulation with PDEs 

Supervisor: Prof. Erik von Harbou, Department of Mechanical and Process Engineering, University of 

Kaiserslautern 

The aim of the project that has been proposed by Jun.-Prof. Erik von Harbou (Department of 

mechanical and process engineering, University of Kaiserslautern) is to model an instationary, 

isothermal chromatographic fixed-bed reactor. The system of partial differential equations 

describing this chemical reactor have been proposed in the paper "Quantifying temperature and 

flow rate effects on the performance of a fixed-bed chromatographic reactor", written by Tien D. Vu 

and A. Seidel-Morgenstern. The task is to solve this system of PDEs both accurately and efficiently. If 

time permits, one may also optimise the process with respect to certain criteria.  
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Abstract

An interpretation of the conflict between male and female parents during the process of caring for their common
offspring by means of Game Theory was given in Houston and Davies. [A.I. Houston, N.B. Davies, The evolution of coop-
eration and life history in the dunnock Prunella modularis, in: R.M. Sibly, R.H. Smith (Eds.), Behavioral Ecology, Black-
well Scientific Publications, 1985, pp. 471–487]. Mathematically, this model represents a static game with continuous
strategy sets. Recently, this model was reconsidered in a dynamic discrete time framework which also included state depen-
dencies [J.M. McNamara et al., A dynamic game-theoretic model of parental care, J. Theor. Biol. 205 (2000) 605–623]. In
this article, we give an interpretation of the parental care conflict in continuous time by means of a differential game with
state dependent strategies.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The parental care conflict between the male and female parent about who provides which level of effort dur-
ing the time when care for the offspring is necessary presents a well-known example in theoretical biology,
where game theory can be applied very successfully, see [1,3,9] as only to mention a few examples. For a
general review of this topic, we refer to the article [5]. Two features which were neglected in the early models,
were time-dependent dynamic strategies as well as state dependency. McNamara et al. [8] introduced a model
which included these two features and lead to interesting results which could not have been obtained with the
static models studied before. This model is mostly based on discrete time techniques. In the current paper, we
give an alternative interpretation of the parental care conflict in terms of a differential game, which is based on
time-dependent strategies, includes the feature of state dependency and leads to analytically tractable results.
0096-3003/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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It also has the nice property that the original static Houston–Davies game from [4] can be naturally embedded
in this game. The main solution technique for differential games is an adaptation of the Hamilton–Jacobi–Bell-
man equation, which translates the problem of finding the evolutionary stable strategy (ESS) into the problem
of solving a particular PDE. Differential games have been applied very successfully in economics and one can
find numerous examples of such games in the economic literature, see for example [2] for many references. The
structure of the parental care game discussed in this article has to the best of our knowledge not been studied
before. It is not zero-sum and not of the linear-quadratic type and simple separation of variable approaches
fail. In order to solve the Hamilton–Jacobi–Bellman equation arising from our parental care game we apply
the technique of characteristic equations, see [6]. This technique translates our partial differential equation into
a system of ordinary differential equations, which are easier to solve. The solutions of these ordinary differen-
tial equations lead to certain curves in space time along which the PDE can be solved. We find that along these
curves the ESS’s and the value function are represented by very simple expressions. This assigns a biologically
fundamental meaning to these curves. The article is organized as follows. We review the static Houston–
Davies game in Section 2. This game presents the parental care conflict in its simplest form and since its intro-
duction has served as a benchmark example. In Section 3, we consider symmetric differential games and their
equilibrium concepts as well as existence results based on the so-called Hamilton–Jacobi–Bellman equation,
while in Section 4 we study the method of characteristic curves, which allows us to solve the Hamilton–
Jacobi–Bellman equation in cases where simple separation of variable arguments fail. Our differential game
version of the parental care conflict is presented in Section 5 and useful results for the structure of the ESS
are derived for the general form. Furthermore, we provide a concrete example, where we give explicit and ana-
lytic formulas for the ESS as well as certain related functionals. In Section 6, we extend the model from Sec-
tion 5, by adding energy-levels of each parent to the state process and introducing feedback strategies which
depend not only on the offspring welfare, but also on the energy-levels. We show however, that by using such
strategies, parents cannot do better, and that the ESS for this game is in fact independent of energy levels. We
compare the newly obtained dynamic ESS with the static ESS for the Houston–Davies game in Section 7 by
using a natural embedding of the static Houston–Davies game into our class of dynamic differential games.
Furthermore we study certain other aspects such as the well being of the offspring under different scenarios
of parents choice of strategy. We summarize the main conclusions in Section 8.

2. The static Houston–Davies parental care game

Let us consider the following parental care game, which was introduced in [4] and along with [7] represents
one of the first game theoretic models of the parental care conflict. All members of a given sex are assumed to be
identical and in order to simplify our arguments and be in line with the discussion which is to follow after this
section we also assume that there are no qualitative differences between the two sexes. At the beginning of the
breeding process each parent makes a single choice of effort /1 resp. /2 2 ½0;1Þ, not knowing the others choice.
If the male provides effort /1 and the female provides effort /2 then Bð/1 þ /2Þmeasures the present reproduc-
tive success. Here, B : ½0;1Þ ! Rþ is a function which we assume is two times continuously differentiable and
satisfies B0ðxÞ > 0 and B00ðxÞ < 0 for all x 2 ½0;1Þ, i.e. Bð�Þ is strictly increasing and strictly concave. This is a
realistic assumption. Bð/1 þ /2Þ can be interpreted as the expected number of offspring in the current brood
surviving to maturity or alternatively, the aggregate level of fitness of the offspring. Increasing effort should
increase the chances of survival and the fitness of the offspring, whereas the effectiveness in increasing the sur-
vival chances decreases with the level of care given. Investing effort into the care process leads to individual costs
for the male resp. female which in return leads to a decrease of future reproductive success. These costs are
incorporated into the model by a cost function C : ½0;1Þ ! Rþ where Cð/1Þ resp. Cð/2Þ indicate the costs
for a male caring with effort /1 resp. a female caring with effort /2. As indicated before, in order to remain
in a symmetric game framework we assume that male and female share the same cost function. We assume that
Cð�Þ is two times continuously differentiable and satisfies C0ðxÞ > 0 and C00ðxÞ > 0 for all x 2 ½0;1Þ, i.e. Cð�Þ is
strictly increasing and strictly convex. The total reproductive success in this model, i.e. the sum of reproductive
success from the present offspring and future reproductive success, is then given by Bð/1 þ /2Þ � Cð/1Þ for the
male and Bð/1 þ /2Þ � Cð/2Þ for the female, given that the male effort is /1 and the female effort is /2. Taking
Si ¼ ½0;1Þ for i ¼ 1; 2 as the set of pure strategies and defining the payoffs as
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p1ð/1;/2Þ ¼ Bð/1 þ /2Þ � Cð/1Þ;
p2ð/1;/2Þ ¼ Bð/1 þ /2Þ � Cð/2Þ;
we obtain a symmetric two player game with continuous pure strategy sets. A symmetric Nash-equilibrium U�

for this game has to satisfy the condition
/� ¼ arg max
/2½0;1Þ

p1ð/;/�Þ
which given our assumption on the function B and C is implied by o
o/ p1ð/;/�Þj/¼/� ¼ 0. This is equivalent to
B0ð2/�Þ ¼ C0ð/�Þ: ð1Þ
Any solution of Eq. (1) leads to a symmetric Nash-equilibrium. If in fact the solution is unique, it can easily be
verified that the corresponding Nash-equilibrium is also an ESS. Let us consider the following choices for Bð�Þ
and Cð�Þ, which we will later compare to the dynamic differential game framework : Bð/Þ ¼ ln ðT � /þ 1Þ and
Cð/Þ ¼ kT

2
/2. The parameter T > 0 represents the length of the caring process, while k represents a cost factor.

With these choices Eq. (1) translates into T
2/�Tþ1

¼ /�T � k. This equation has exactly one positive solution /�,
which is given by
/� ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8T

k

q
� 1

4T
: ð2Þ
The strategy /� is therefore an ESS in the static Houston–Davies game described above. We will later dem-
onstrate how the static Houston–Davies game can be embedded in our dynamic differential game framework
and compare the performance of /� with the ESS for the corresponding differential game as well as the effects
on the offspring.

3. A brief review on symmetric differential games

Before we start extending the static parental care game discussed in the previous section into a dynamic
differential game let us now briefly review the subject of differential games. We concentrate on feedback strat-
egies which depend on time and the current state of the system and allow the players to make their decision
dependent on the dynamic state of the underlying model. We do not discuss open loop strategies which only
depend on the initial state of the system and which we consider as to static. The main non-cooperative solution
concept for differential games with feedback strategies is that of a feedback Nash-equilibrium which we discuss
later in this section. The computation of such feedback Nash-equilibria is based on an extension of the well-
known Hamilton–Jacobi–Bellman equation from classical optimal control theory. For a thorough treatment
of differential games see [2]. An excellent overview of the main results can also be found in the second chapter
of [10]. In this article, we only consider a symmetric two player framework and therefore restrict our discus-
sion on the case of symmetric feedback Nash-equilibriums. This simplifies the in general rather technical dis-
cussion of the existence and characterization of feedback Nash-equilibria considerably, as it allows us to avoid
systems of partial differential equations and work with one single partial differential equation instead. Given
these assumptions the players in such a differential game use strategies of the type uðs; xÞ which depend on
time s and the state x 2 Rm of the system at time s. These strategies in fact control the state of the system
in the way that the state dynamics is given by a controlled differential equation
_X ðsÞ ¼ f ðs;X ðsÞ;u1ðs;X ðsÞÞ;u2ðs;X ðsÞÞ: ð3Þ

Note that we denote the state trajectory with a capital letter X in order to distinguish it from the state variable
x and the later occurring characteristic curve, which will be denoted by xð�Þ. In order to remain in a really
symmetric framework, we have to assume that the function f is symmetric in the third and fourth argument,
i.e. f ðs; x; y1; y2Þ ¼ f ðs; x; y2; y1Þ. This assumption represents the idea that the growth-rate of the state of the
system depends only on the two strategies which are used, but not on which player is using which strategy.
In many cases, this represents a reasonable assumption. Strategies are assumed to be admissible, which means
that given a pair of strategies u1ðs; xÞ;u2ðs; xÞ the ODE (3) has a unique solution. Whenever we speak of
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strategies in the following, we mean admissible strategies. Both players then use strategies in order to maxi-
mize their payoffs which are assumed to be of the following type
J i ¼
Z T

0

F ðs;X ðsÞ;uiðs;X ðsÞÞ;u�iðs;X ðsÞÞdsþ qðX ðT ÞÞ ð4Þ
for i ¼ 1; 2, where F ðs; x; y1; y2Þ and qðxÞ are sufficiently smooth functions. Here, we use the standard notation,
that �i denotes the complementary index. The following definition presents the concept of a symmetric feed-
back Nash-equilibrium.

Definition 3.1. A symmetric feedback Nash-equilibrium strategy for the two player symmetric differential
game presented above is a feedback strategy u�ðs; xÞ for which there exists a functions V ðt; xÞ, defined on
½0; T � � Rm s.t. V ðT ; xÞ ¼ qðxÞ and
V ðt; xÞ ¼
Z T

t
F ðs;X �ðsÞ;u�ðs;X �ðsÞÞ;u�ðs;X �ðsÞÞdsþ qðX �ðT ÞÞ

P
Z T

t
F ðs;X ðsÞ;uðs;X ðsÞÞ;u�ðs;X ðsÞÞdsþ qðX ðT ÞÞ
for all feedback strategies uðs; xÞ, x 2 Rm and t 2 ½0; T �. Here, X �ðsÞ resp. X ðsÞ denote the trajectories of the
state variable given the strategy pairs ðu�ðs; xÞ;u�ðs; xÞÞ resp. ðuðs; xÞ;u�ðs; xÞÞ and initial condition
x�ðtÞ ¼ xðtÞ ¼ x.

The function V ðt; xÞ is called the value function. One important feature of the equilibrium concept defined
above, is that if a strategy provides a feedback Nash-equilibria and one restricts the game to a sub-game start-
ing at time t 2 ½0; T � and some initial state x 2 Rm at time t, then the same strategy defines a feedback Nash-
equilibrium for that sub-game as well. In a classical game theoretic framework we would call such a strategy a
sub-game perfect Nash-equilibria. Let us now come to the main tool which helps us to compute feedback
Nash-equilibria. It is based on a suitable adaptation of the classical Hamilton–Jacobi–Bellman equation for
standard optimal control problems.

Proposition 3.1. A feedback strategy u�ðs; xÞ provides a symmetric feedback Nash-equilibrium for the differential

game introduced above, if there exist a continuously differentiable function V ðt; xÞ : ½0; T � � Rm ! R satisfying
the following partial differential equations: V ðT ; xÞ ¼ qðxÞ and
�V tðt; xÞ ¼ max
u
fF ðt; x; u;u�ðt; xÞÞ þ V xðt; xÞf ðt; x; u;u�ðt; xÞÞg

¼ F ðt; x;u�ðt; xÞ;u�ðt; xÞÞ þ V xðt; xÞf ðt; x;u�ðt; xÞ;u�ðt; xÞÞ;
where the maximization above is over all admissible controls at time t and state x.

Proof. This follows easily from Theorem 2.2.3 in [10, p. 28]. h

In the following, we will illustrate how to apply this proposition in practice. The discussion is very informal
and we leave out the technical details. Assume we are carrying out the maximization above point-wise in u. A
necessary condition for u�ðt; xÞ to be the maximizer would then be that
o

ou
F ðt; x; u;u�ðt; xÞÞju¼u�ðt;xÞ þ V xðt; xÞ

o

ou
� f ðt; x; u;u�tð; xÞÞju¼u�ðt;xÞ ¼ 0:
Assume for simplicity that a unique solution u�ðt; xÞ of this equation exists and that it indeed represents the
maximizer. This solution can be written as u�ðt; xÞ ¼ hðt; x; V xðt; xÞÞ with a function hðt; x; pÞ. The latter func-
tion can be substituted for the maximizer in the maximization above and this leads to an equation of the form
0 ¼ Hðt; x; V xðt; xÞÞ þ V tðt; xÞ ð5Þ

with another function Hðt; x; pÞ. Eq. (5) represents a non-linear first-order partial differential equation which
can be dealt with, by methods from partial differential equations. In the following section demonstrate how to
solve this type of PDE.
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4. The method of characteristics

Let us consider a first-order but possibly non-linear partial differential equation of the following type
Hðt; x; uxðt; xÞÞ þ utðt; xÞ ¼ 0
with initial condition u0ð0; xÞ ¼ u0ðxÞ, where Hðt; x; pÞ is a continuously differentiable function. Such equations
are generally referred to as Hamilton–Jacobi equations. While we will not make use of any general existence
result for solutions of PDE’s of this type, basically because we construct solutions in the individual cases which
are of interest for us, it is important to note that if Hðt; x; pÞ satisfies a local Lipschitz condition in the variable
p, then a solution is unique, see Theorem 1, [6, p. 77]. Sometimes it is possible to derive closed form solutions
by use of a simple separation of variable approach, which leads to a system of ordinary differential equations
which are easier to solve. In fact, in most examples seen in the economic and management literature this is the
case. In our differential version of the parental care game, this technique however does not work. We therefore
illustrate an advanced technique how to solve Hamilton–Jacobi equations, which is known as the method of
characteristic functions. The idea is, similar to the separation of variables approach, to reduce the PDE into a
system of ordinary differential equations. However, instead of separating the two autonomous variables t and
x the space will be partitioned into one-dimensional curves of the form fðt; xnðtÞÞjt 2 ½0; gðnÞÞg; where now
xnðtÞ is assumed to be a function of time, and the PDE is solved along these curves. We assume that
xnð0Þ ¼ n 2 R and that the set of curves is parameterized in this way by n. We will later specify these curves
in terms of ordinary differential equations. For now assume that one curve for one particular n has been
picked and to simplify notation omit n in the notation. Let us also assume that the curves are continuously
differentiable and denote with _xðtÞ the time derivative of xðtÞ. Finally assume that a sufficiently smooth solu-
tion uðt; xÞ of the PDE above exists. Denote with vðtÞ the function vðtÞ :¼ uðt; xðtÞÞ. This function represents
the restriction of the function u to the one dimensional curve identified by xð�Þ. Let us furthermore define func-
tions pðtÞ ¼ uxðt; xðtÞÞ and qðtÞ ¼ utðt; xðtÞÞ, where uxðt; xÞ and utðt; xÞ denote the partial derivatives of the func-
tion uðt; xÞ with respect to x and t. The derivative of vð�Þ with respect to time can now be computed as
_vðtÞ ¼ utðt; xðtÞÞ þ uxðt; xðtÞÞ � _xðtÞ ¼ qðtÞ þ pðtÞ � _xðtÞ:

For the time derivative of pð�Þ and qð�Þ we compute
_pðtÞ ¼ uxtðt; xðtÞÞ þ uxxðt; xðtÞÞ � _xðtÞ; ð6Þ
_qðtÞ ¼ uttðt; xðtÞÞ þ utxðt; xðtÞÞ � _xðtÞ: ð7Þ
On the other side, by differentiating the original PDE for uðt; xÞ with respect to x resp. t we obtain
H xðt; x; uxðt; xÞÞ þ H pðt; x; uxðt; xÞÞ � uxxðt; xÞ þ utxðt; xÞ ¼ 0; ð8Þ
H tðt; x; uxðt; xÞÞ þ H pðt; x; uxðt; xÞÞ � uxtðt; xÞ þ uttðt; xÞ ¼ 0: ð9Þ
If we now specify xðtÞ as the solution of the ordinary differential equation
_xðtÞ ¼ H pðt; xðtÞ; uxðt; xðtÞÞÞ; xð0Þ ¼ n; ð10Þ

where n is the parameter discussed in the beginning of this section, we can, by using Eqs. (8) and (9), write Eqs.
(6) and (7) as follows:
_pðtÞ ¼ �H xðt; xðtÞ; pðtÞÞ; ð11Þ
_qðtÞ ¼ �H tðt; xðtÞ; pðtÞÞ: ð12Þ
Furthermore, we obtain for the time derivative of vð�Þ the equation
_vðtÞ ¼ qðtÞ þ pðtÞ � H pðt; xðtÞ; pðtÞÞ; vð0Þ ¼ uð0; xð0ÞÞ ¼ u0ðnÞ: ð13Þ

The values for p(0) and q(0) are identified as follows:
pð0Þ ¼ uxð0; xð0ÞÞ ¼
o

ox
u0ðxÞx¼n ¼ u00ðnÞ ð14Þ
while q(0) can be obtained from
0 ¼ Hð0; n; u00ðnÞÞ þ qð0Þ () qð0Þ ¼ �Hð0; n; u00ðnÞÞ: ð15Þ
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Eqs. (10)–(13) together with the corresponding initial conditions represent a system of four ordinary differen-
tial equations for the functions xð�Þ; pð�Þ; qð�Þ and vð�Þ. Let us remind that all these functions depend implicitly
on the parameter n which was chosen to be the initial value of the function xð�Þ. In order to compute the value
of the function uðt; xÞ at a particular point ðt; xÞ one can now try to determine n ¼ nðt; xÞ as a function of t and
x in a way that xnðtÞ ¼ x. If this is possible we have uðt; xÞ ¼ vnðt;xÞðtÞ.

5. A differential parental care game and its feedback Nash-equilibria

In this section, we present our dynamic differential game model for the parental care conflict in continuous
time. The framework is that of symmetric differential games with feedback strategies as discussed in the previ-
ous section. For this purpose, we define the state variable X ðtÞ ¼ Leveloffitnessofoffspringattimet. We assume
that the benefit for the parents is determined by the variable xðT Þ, where T denotes the end of the care period. In
the following, we assume that there are no major asymmetries between male and female and that the benefit for
male and female is the same. The actions for male and female are given by choosing an instantaneous level of
effort at time t. As indicated before, we assume that the information level of male and female is accurately given
by using feedback strategies of the form uiðs; xÞ ¼ Levelofinstantaneouseffortgiventimesandstatex. Here, u1ðs; xÞ
denotes the level for the male and u2ðs; xÞ the level of the female, respectively. The costs CiðtÞ accumulated up to
time t caused by such a strategy are assumed to be given by
CiðtÞ ¼
k
2

Z t

0

uiðs;X ðsÞÞ
2ds; i ¼ 1; 2; ð16Þ
where k represents a cost factor. The payoffs for male and female are then given by the difference of benefit and
costs, i.e.
J i :¼ X ðT Þ � CiðT Þ: ð17Þ

By looking at this payoff function one might be tempted to say that there is no decreasing marginal benefits,
because the state variable X(T) enters linearly. This however is not correct. The decreasing marginal benefits
from effort levels are incorporated in the controlled differential equation for the state variable X(t). Here, we
assume that X(t) is given by the following differential equation
_X ðtÞ ¼ bðX ðtÞ;u1ðt;X ðtÞÞ þ u2ðt;X ðtÞÞ ð18Þ
with the initial condition X ð0Þ ¼ 0. The function bðx; yÞ controls the growth rate of the offspring’s fitness level.
We will assume that this growth rate is always positive, meaning that over the caring period the offspring can-
not loose any fitness, even though the parents may radically decrease their effort levels. We assume in the fol-
lowing that the growth rate function bðx; yÞ is of the type
bðx; yÞ ¼ y � gðxÞ; ð19Þ

where g is a function which we specify later. Looking at Eq. (19) we see that the sum of the two effort levels of
the parents has a linear effect on the instantaneous growth rate and that the state dependency of the growth
rate is modeled by the function g(x). From a biological point of view, we think of the function g(x) as a met-
abolic factor, which measures the effect an absolute effort of y has on the offspring’s fitness, given the off-
spring’s current state is equal to x. It is precisely this function g(x) which we use in order to model the
effect of decreasing marginal benefits from effort levels. Let us illustrate this in the following. First note that
the static Houston–Davies model is embedded in our dynamic framework by choosing the strategies uiðs; xÞ of
male and female to be state independent and constant in time, i.e. uiðs; xÞ � /i with /i 2 R. By choosing such
strategies the differential equation for the state variable X(t) becomes _X ðtÞ ¼ ð/1 þ /2Þ � gðxðtÞÞ. By setting
y ¼ /1 þ /2 and denoting the dependence of the solution of the differential equation above on y by a subindex
we obtain the differential equation:
_X yðtÞ ¼ y � gðX yðtÞÞ; X yð0Þ ¼ 0: ð20Þ

The chosen model then accurately represents the effect of decreasing marginal benefits to effort levels if the
function BðyÞ :¼ X yðT Þ is increasing and concave. We assume in the following that this is the case. On the
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other side, the following lemma shows how to re-obtain a given static benefit function Bð�Þ as in Section 2, by
choosing a specific function gð�Þ.

Lemma 5.1. Let Bð�Þ be a strictly concave or strictly convex continuously differentiable function with Bð0Þ ¼ 0.

Define the function gðxÞ :¼ 1
T � 1
ðB�1Þ0ðxÞ, where B�1ð�Þ denotes the inverse function of Bð�Þ. Then the solution X yðtÞ of

the differential equation (20) satisfies X yðT Þ ¼ BðyÞ.

Proof. We have
d

dt
ðB�1ðX yðtÞÞÞ ¼ ðB�1Þ0ðX yðtÞÞ � _X yðtÞ ¼ ðB�1Þ0ðX yðtÞÞ � y � gðX yðtÞÞ

¼ ðB�1Þ0ðX yðtÞÞ � y �
1

T
1

ðB�1Þ0ðX yðtÞÞ
¼ y

T

Integration over ½0; T � gives B�1ðX yðT ÞÞ ¼ y and therefore X yðT Þ ¼ BðyÞ, which was to prove. h

We also observe that static strategies, when substituted in the dynamic cost functional in Eq. (16), lead to
static quadratic costs. The situation is completely similar when the quadratic instantaneous costs are substi-
tuted by some other cost functional. We therefore conclude from Lemma 5.1 that the static Houston–Davies
framework can be completely embedded in the dynamic differential game framework presented in this section.
Our main example leading to logarithmic static utility is obtained by choosing gðxÞ ¼ e�x which leads to
BðzÞ ¼ ln ðTzþ 1Þ as in example discussed in Section 2. We will later discuss this case explicitly.

Let us now try to solve the differential game discussed above for symmetric feedback Nash-equilibria. As
already indicated in Section 3, we are mainly interested in symmetric Nash-equilibria since they are more
meaningful from an evolutionary point of view and from the symmetries apparent in our model. In order
to do this let us set up the Hamilton–Jacobi–Bellman equation for this problem. The functions F, q and f

in the setup of Section 4 are given, respectively, by F ðs; x; y1; y2Þ ¼ � k
2
y2

1, qðxÞ ¼ x and f ðs; x; y1; y2Þ ¼
bðx; y1 þ y2Þ. Let V ðt; xÞ denote the value function for either male or female, as discussed in Section 3. For
a feedback symmetric Nash-equilibrium u�ðs; xÞ this functions would have to satisfy the following equations:
V ðT ; xÞ ¼ x and
� V tðt; xÞ ¼ max
u
� k

2
u2 þ V xðt; xÞ � bðx; uþ u�ðt; xÞÞ

� �
;

¼ � k
2
u�ðt; xÞ2 þ V xðt; xÞ � bðx; 2u�ðt; xÞÞ:
Let us compute the maximizer uðt; xÞ ¼ u�ðt; xÞ in the equation above. Differentiating and setting the result
equal to zero leads to the following equation:
�k � u�ðt; xÞ þ V xðt; xÞ �
o

oy
bðx; 2u�ðt; xÞÞ ¼ 0:
It follows from our assumption bðx; yÞ ¼ y � gðxÞ that o
oy bðx; yÞ ¼ gðxÞ. Substituting this in the equation above

and solving for u�ðt; xÞ leads to
u�ðt; xÞ ¼ 1

k
V xðt; xÞ � gðxÞ:
We now substitute this expression in the original Hamilton–Jacobi–Bellman equation and obtain
�V tðt; xÞ ¼ �
1

2k
V xðt; xÞ2 � gðxÞ2 þ V xðt; xÞ �

2

k
� V xðt; xÞ � gðxÞ � gðxÞ ¼

3

2k
V xðt; xÞ2 � gðxÞ2:
The following result is therefore a direct consequence of Proposition 3.1.

Proposition 5.1. If the following non-linear first-order boundary value problem
�V tðt; xÞ ¼
3

2k
V xðt; xÞ2 � gðxÞ2; V ðT ; xÞ ¼ x ð21Þ
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has a solution, then a symmetric feedback Nash-equilibrium strategy u�ðt; xÞ for the differential parental care

game exists and is given by the equation
u�ðt; xÞ ¼ 1

k
V xðt; xÞ � gðxÞ: ð22Þ
We note that uniqueness of a possible solution of PDE (21) is guaranteed by Theorem 1, in [6, p. 77]. Let us
now use the method of characteristic functions explained in the previous section to transform the problem of
solving the PDE (21) in Proposition 5.1 into a problem concerning ordinary differential equation. The follow-
ing proposition is a key result as it gives simple explicit expressions for the value function and the ESS along
the characteristic curve.

Proposition 5.2. Define xð�Þ as the solution of the ordinary differential equation
_xðtÞ ¼ � 3

k
gðnÞgðxðtÞÞ; xð0Þ ¼ n 2 R: ð23Þ
Then the solution V ðt; xÞ of (21) satisfies
V ðT � t; xðtÞÞ ¼ � 3

2k
gðnÞ2t þ n ð24Þ
for t 2 ½0; T � and the ESS is constant along the curve with values
u�ðT � t; xðtÞÞ ¼ 1

k
gðnÞ: ð25Þ
Let us discuss this result, before we continue with its proof. The value function and even more the strategy
appear to have a very simple form. This form however could only be obtained after changing the geometry and
considering the space-time along the time reversed characteristic curves. The fact that the value function is
linear along these curves and the ESS constant however is very striking and might indeed be very useful, when
discussing evolutionary dynamics for our differential game.

Proof. As indicated before, we will use the theory of characteristic equations in order to prove Proposition 5.2.
First of all note that (21) represents a terminal value problem rather than an initial value problem. In order to
apply the method of characteristic equations discussed in the last section, we therefore have to perform a time
inversion. In order to do this, simply define the function uðt; xÞ as uðt; xÞ ¼ V ðT � t; xÞ. Using that utðt; xÞ ¼
�V tðT � t; xÞ and uxðt; xÞ ¼ V xðT � t; xÞ we find that the PDE for V ðt; xÞ translates into the following PDE
utðt; xÞ ¼ c � uxðt; xÞ2 � gðxÞ2; uð0; xÞ ¼ x
with c ¼ 3
2k. In this case, the function H from the previous section is given by Hðt; x; pÞ ¼ �c � p2 � gðxÞ2. Notic-

ing that Ht � 0 we derive the characteristic equations for the functions xð�Þ, pð�Þ and qð�Þ as follows:
_xðtÞ ¼ �2cpðtÞ � gðxðtÞÞ2; xð0Þ ¼ n; ð26Þ
_pðtÞ ¼ 2c � pðtÞ2 � gðxðtÞÞ � g0ðxðtÞÞ; pð0Þ ¼ 1 ð27Þ
_qðtÞ � 0; qð0Þ ¼ cgðnÞ2: ð28Þ
We see from the last equation, that the function qð�Þ must be constant in time and therefore qðtÞ ¼ cgðnÞ2 for
all t. The equation for vðtÞ ¼ uðt; xðtÞÞ is then given by
_vðtÞ ¼ �2cpðtÞ2 � gðxðtÞÞ2 þ cgðnÞ2
with vð0Þ ¼ n and can be obtained by simple integration, once the solutions for xð�Þ and pð�Þ are known. The
main problem is therefore to solve the system of ordinary differential equations (26) and (27). In order to do
this let us first observe that (26) and (27) are equivalent to
_xðtÞ ¼ �2cpðtÞ � gðxðtÞÞ2; ð29Þ

_pðtÞ ¼ �pðtÞ � _xðtÞ � g
0ðxðtÞÞ

gðxðtÞÞ ð30Þ
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with the corresponding initial conditions. From the chain rule of calculus we have
_xðtÞ � g
0ðxðtÞÞ

gðxðtÞÞ ¼
d

dt
ln ðgðxðtÞÞ
and therefore that (30) is equivalent to
d

dt
ln ðpðtÞÞ ¼ _pðtÞ

pðtÞ ¼ �
d

dt
ln ðgðxðtÞÞ ¼ d

dt
ln

1

gðxðtÞ

� �
:

Integration of this equation leads to ln ðpðtÞÞ ¼ ln 1
gðxðtÞÞ

� �
þ � where � represents an integration constant. This

constant can be easily determined from the initial conditions pð0Þ ¼ 1 and xð0Þ ¼ n, and in fact � ¼ ln ðgðnÞÞ.
We therefore obtain
ln ðpðtÞÞ ¼ ln
1

gðxðtÞÞ

� �
þ ln ðgðnÞÞ ¼ ln

gðnÞ
gðxðtÞÞ

� �

and from this we conclude the useful relationship
pðtÞ ¼ gðnÞ
gðxðtÞÞ : ð31Þ
Substituting (31) into (29) gives
_xðtÞ ¼ �2c
gðnÞ

gðxðtÞÞ � gðxðtÞÞ
2 ¼ �2cgðnÞ � gðxðtÞÞ:
We therefore have transformed the problem into solving the ordinary differential equation
_xðtÞ ¼ �2cgðnÞ � gðxðtÞÞ; xð0Þ ¼ n: ð32Þ

This is precisely Eq. (23) and from the general theory of characteristic equations as discussed in Section 4 it
follows that
_vðtÞ ¼ �2c
gðnÞ

gðxðtÞÞ

� �2

� gðxðtÞÞ2 þ cgðnÞ2 ¼ �cgðnÞ2:
With vð0Þ ¼ n it follows immediately that vðtÞ ¼ �cgðnÞ2t þ n and therefore
V ðT � t; xðtÞÞ ¼ uðt; xðtÞÞ ¼ vðtÞ ¼ �cgðnÞ2t þ n:
For the ESS we conclude from Proposition 5.1 that
u�ðT � t; xðtÞÞ ¼ 1

k
V xðT � t; xðtÞÞ � gðxðtÞÞ ¼ 1

k
uxðt; xðtÞÞ � gðxðtÞÞ:
By definition of the function pð�Þ in Section 4 we have pðtÞ ¼ uxðt; xðtÞÞ and we therefore conclude from Eq.
(31) above that
u�ðT � t; xðtÞÞ ¼ 1

k
gðnÞ

gðxðtÞÞ � gðxðtÞÞ ¼
1

k
gðnÞ
which finishes the proof. h

In order to give an explicit expression for the function V ðt; xÞ as a function in the autonomous variable t

and x, the parameter n has to be determined as a function of t and x as indicated in Section 4. We have to
notice however, that unless the function gð�Þ is not further specified, there is no general way to do this, as
Eq. (20) represents more or less a one-dimensional differential equation in its general form. In order to dem-
onstrate how this conversion from n to the variables t and x works, we reconsider again the example where the
function g is given by gðxÞ ¼ e�x.

Example 5.1. Assume gðxÞ ¼ e�x and set c ¼ 3
2k. In this case, the ODE for the characteristic curve xð�Þ is given

by _xðsÞ ¼ �2ce�ne�xðsÞ; xð0Þ ¼ n which leads to xnðsÞ ¼ lnð�2ce�n � sþ enÞ. This equation can be solved for n in
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order to obtain xnðtÞ ¼ x with nðt; xÞ ¼ ln ð12 ex þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2x þ 8ct
p

Þ. Please note that there is a singularity in the
equation for xnðsÞ but that it is well defined for s 2 ½0; t� when choosing n ¼ nðt; xÞ as above. The actual
characteristic curves are time reversed. The following figure presents an illustration of characteristic curves
(see Fig. 1).

Please note that in principal every point in the plane above is finally reach as the endpoint of a characteristic
curve, but that for obvious reasons we could not draw all characteristic curves. Substituting the expression
from above for n in the corresponding equations for V and u� in (24) and (25) gives
V ðt; xÞ ¼ �c
1

1
2
ex þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2x þ 8cðT � tÞ

p	 
2
� ðT � tÞ þ ln

1

2
ex þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2x þ 8cðT � tÞ

p� �

as well as
u�ðt; xÞ ¼ 1

k
1

1
2
ex þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2x þ 8cðT � tÞ

p	 
 :

The dynamics of the offspring fitness under the ESS’s is obtained by substituting the expressions from the pre-
vious equation into the state dynamic (18):
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Fig. 2. Dynamics of offspring fitness under ESS.



Fig. 3. Evolutionary strategy, k = 4, T = 100.

Fig. 4. Evolutionary strategy, k = 4, T = 100.
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_X ðtÞ ¼ 1

k
4e�X ðtÞ

eX ðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2X ðtÞ þ 12

k ðT � tÞ
q ð33Þ
with X ð0Þ ¼ 0. Unfortunately, we were not able to obtain a closed form expression for the solution for this
ordinary differential equation. Fig. 2 shows a graphical representation for the state trajectory under the ESS’s
which has been computed numerically.

Figs. 3 and 4 represent the ESS as well as the value function as a function of state and time.
Fig. 3 clearly shows that the parental effort increases toward the end of the care period and decreases with

the fitness level of the offspring. The latter effect is far more dramatic toward the end of the care period. In
Fig. 4, we can clearly observe the boundary condition V ðT ; xÞ ¼ x at the left-hand side.
6. State vs. energy dependent feedback strategies

In this section, we discuss whether parents may have an advantage, if they could condition their strategies
not only on the level of offspring welfare, but also on the levels of energy reserves. Obviously, one can argue that
energy expenditures and offspring well-fare are naturally linked, and that by observing its own energy levels and
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the offspring well-fare the parent may well be able to deduce its partners energy expenditures and therefore
energy levels. But in our deterministic setup we can even say more. In fact, we prove that it is only the knowl-
edge of the offspring welfare, not the knowledge about its own energy levels, which is needed to implement the
dynamic evolutionary strategy. We mention at this point, that the fact that our model is deterministic is crucial
for the following consideration. In a stochastic model, where independent random effects influence the welfare
of the offspring and the energy levels of the parents we expect this to change. Let us set up a dynamic differential
parental care game, which allows for welfare and energy dependent strategies. In order to achieve this we have
to extend the state equation of the differential game from Section 5 as follows :
_X ðtÞ ¼ bðX ðtÞ;u1ðt;X ðtÞ;E1ðtÞ;E2ðtÞÞ þ u2ðt;X ðtÞ;E2ðtÞ;E1ðtÞÞÞ;

_EiðtÞ ¼ �
k
2
uiðt;X ðtÞ;EiðtÞ;E�iðtÞÞ2
for i ¼ 1; 2. Here, EiðtÞ represent the energy levels of parent i at time t. The payoff for parent i can now be
represented by J i ¼ X ðT Þ þ EiðT Þ which is exactly the same expression as in (17). The difference is that feed-
back strategies in this setup now not only depend on the offspring welfare but also on the energy-levels of both
parents.

Proposition 6.1. The ESS u�ðt; x; e1; e2Þ of the differential parental care game presented above coincides with the

ESS computed for the differential parental care game presented in Section 5, and as a consequence does not

depend on the level of energy reserves e1 and e2.

Proof. In the formal setup of Section 3, we now have to set F � 0 and
f ðs; x; y1; y2Þ ¼ ðy1 þ y2Þ � gðxÞ;�
k
2

y2
1;�

k
2

y2
2

� �T
as well as qiðx; e1; e2Þ ¼ xþ ei. Setting up the Hamilton–Jacobi–Bellman equation for the first parent and a
symmetric feedback Nash-equilibrium u�ðt; x; e1; e2Þ we obtain for the valuefunction V ðt; x; e1; e2Þ
� V tðt; x; e1; e2Þ ¼ max
u

�
V xðt; x; e1; e2Þ � ðuþ u�ðt; x; e2; e1ÞÞ � gðxÞ

þ V e1
ðt; x; e1; e2Þ � �

k
2

u2

� �
þ V e2

ðt; x; e1; e2Þ � �
k
2
u�ðt; x; e2; e1Þ2

� ��

with V ðT ; x; e1; e2Þ ¼ xþ e1. Carrying out the maximization in the brackets gives
u�ðt; x; e1; e2Þ ¼
1

k
� V xðt; x; e1; e2Þ
V e1
ðt; x; e1; e2Þ

� gðxÞ: ð34Þ
By a symmetry argument we obtain for the second players strategy u�ðt; x; e2; e1Þ ¼ 1
k �

V xðt;x;e2;e1Þ
V e1
ðt;x;e2;e1Þ

� gðxÞ where

V e1
ðt; x; e2; e1Þ denotes the partial derivative with respect to the third argument of the valuefunction of the first

parent evaluated at ðt; x; e2; e1Þ. Substituting these two expressions into the Hamilton–Jacobi–Bellman equa-
tion leads to
� V tðt; x; e1; e2Þ ¼
1

k
� V xðt; x; e1; e2Þ2

V e1
ðt; x; e1; e2Þ

þ 1

k
� V xðt; x; e1; e2ÞV xðt; x; e2; e1Þ

V e1
ðt; x; e2; e1Þ

 

� 1

2k
� V xðt; x; e1; e2Þ2

V e1
ðt; x; e1; e2Þ

� 1

2k
V e2
ðt; x; e1; e2Þ �

V xðt; x; e2; e1Þ2

V e1
ðt; x; e2; e1Þ

!
� gðxÞ2:
Uniqueness of a possible solution of the PDE follows again from [6, p. 77]. Let us try the following candidate
for the solution of the PDE above. Define V ðt; x; e1; e2Þ :¼ eV ðt; xÞ þ e1 where eV ðt; xÞ is a function which does
not depend on e1 or e2. Clearly, we have V t ¼ eV t; V x ¼ eV x; V e1

¼ 1; V e2
¼ 0. Substituting this into the PDE

derived above, we obtain a for the function eV ðt; xÞ

�eV tðt; xÞ ¼

3

2k
eV xðt; xÞ � gðxÞ2:
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The latter PDE is identical with (21), and represents the Hamilton–Jacobi–Bellman equation for the differen-
tial game, where strategies only depend on the offspring’s welfare. With the terminal condition eV ðT ; xÞ ¼ x we
obtain V ðT ; x; e1; e2Þ ¼ xþ e1. The statement of Proposition 6.1. now follows from Eq. (34), the fact that
V e1
ðt; x; e1; e2Þ ¼ 1 and Proposition 5.1. h
7. A comparison with the static Houston–Davies parental care game

Let us now compare the ESS from the static Houston–Davies game as discussed in Section 2, but interpreted
as a strategy in the differential game introduced in Section 5, and the ESS for the differential parental care game.
We restrict our study to the case of Example 5.1 but for other choices of the function gð�Þ, qualitatively similar
results can be obtained. We already demonstrated in Section 5 how the static Houston–Davies game from Sec-
tion 2 can be embedded in our dynamic differential framework by considering the static strategies from the Hous-
ton–Davies game as dynamic feedback strategies which are constant in time and state. With the choice of
gðxÞ ¼ e�x and quadratic costs as introduced in Section 5, we re-obtain exactly the version of the Houston–
Davies game discussed in Section 2. We now consider the following three scenarios of possible parental care:

• Scenario 1. Both parents use the static Houston–Davies strategy.
• Scenario 2. One parent uses the static Houston–Davies strategy and one parent the dynamic ESS computed

in Section 5.
• Scenario 3. Both parents use the dynamic ESS.

In oder to see how these three scenarios qualitatively differ from each other let us first compare the state
trajectories, which represent the offspring’s fitness as a function of time. Fig. 5 displays the offspring’s fitness
under each of the three scenarios for k ¼ 1.

The dashed green line represents scenario 1, the dotted black line scenario 2 and the slid blue line scenario 3.
Approximatively, all trajectories represent logarithmic growth. One can see, that the three curves do not inter-
sect, except at t ¼ 0. Furthermore, the offspring is obviously better off in scenario 1 then in scenario 3. More
precisely, we have

Proposition 7.1. Denote with X sðtÞ, X mðtÞ and X dðtÞ the offspring’s fitness under scenario 1, 2 and 3, respectively.

Then X sðtÞP X mðtÞP X dðtÞ for all t 2 ½0; T �.

Proof. We only proof X sðtÞP X dðtÞ for all t 2 ½0; T �. The inequalities X sðtÞP X mðtÞ and X mðtÞP X dðtÞ for all
t 2 ½0; T � can be proved along the same line of arguments, but the formulas involved are much longer. Our
proof consists of two parts. In the first part we show that in the initial phase X sð�Þ grows faster then X dð�Þ,
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Fig. 5. Offspring fitness under different scenarios.
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while in the second part we show, that once X sð�Þ is above X dð�Þ it remains above X dð�Þ forever. At time t ¼ 0
we have by definition X dðtÞ ¼ 0 ¼ X sðtÞ. The state dynamics under scenario 1 resp. scenario 3 are given as
follows:
_X sðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8T

k

q
� 1

2T
� e�X sðtÞ;

_X dðtÞ ¼
2

k
1

1
2
eX d ðtÞ þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2X d ðtÞ þ 12

k ðT � tÞ
q � e�X d ðtÞ:
Let us write these two dynamics as _X dðtÞ ¼ f ðt;X dðtÞÞ � e�X d ðtÞ and _X sðtÞ ¼ CðkÞ � e�X sðtÞ where the function

f ðt; xÞ is given by f ðt; xÞ ¼ 1
k

4

exþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2xþ12

k ðT�tÞ
p and CðkÞ ¼

ffiffiffiffiffiffiffi
1þ8T

k

p
�1

2T . The differential equation for X sð�Þ can be solved
analytical. The result is
X sðtÞ ¼ � lnð2Þ þ ln
t �

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8T

k

q
� t þ 2T

T

0@ 1A: ð35Þ
The instantaneous growth rate at time t ¼ 0 for X dð�Þ is given by
f ð0; 0Þ ¼ 1

k
4

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12

k T
q ¼: DðkÞ:
Now consider the function EðkÞ ¼: CðkÞ � DðkÞ. The derivative of EðkÞ with respect to k is given by the fol-
lowing expression:
E0ðkÞ ¼ �2ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8T

k

q
k2
þ 4

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12T

k

q� �
k2
� 24T

k3 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12T

k

q� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12T

k

q :
By a brute force computation one can show that this expression is always negative. The function EðkÞ is there-
fore strictly monotonic decreasing. Furthermore, it follows easily from its definition, that limk!1EðkÞ ¼
limk!1CðkÞ � limk!1DðkÞ ¼ 0� 0 ¼ 0. Therefore, EðkÞP 0 for all k 2 ½0;1Þ and hence CðkÞP DðkÞ;
forallk 2 ½0;1Þ. The latter inequality means that for all cost factors k the instantaneous growth rate of
X sð�Þ at time t ¼ 0 is greater then the instantaneous growth rate of X dð�Þ at time t ¼ 0 and therefore that in
the very beginning of the breeding process the offspring is better of under the static Houston–Davies strategy
then under the dynamic evolutionary strategy. The second part of the proof becomes more technical and leads
to very long and tedious computations, which we omit. We sketch the general idea however. Assume that there
would exist a time t ¼ t� s.t. X sðt�Þ ¼ X dðt�Þ. From Eq. (35), we then know that _X dðt�Þ ¼ gkðt�Þ � e�X d ðt�Þ with
gkðtÞ ¼
1

k
4

1þ
ffiffiffiffiffiffiffi
1þ8T

K

p
�1

	 

�t

2T

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffi
1þ8T

K

p
�1

	 

�t

2T

� �2

þ 12
k � ðT � tÞ

s :
We are done if we can show that gkðt�Þ 6 CðkÞ since then, even if the two trajectories would touch, the tra-
jectory of X dð�Þ would remain below the trajectory of X sð�Þ. Eq. (35) would obviously be true if maxt2½0;T �
gkðtÞ 6 CðkÞ. In the first part of the proof we have already shown that gð0Þ ¼ f ð0; 0Þ ¼ DðkÞ 6 CðkÞ. With
a little bit more effort one can also show that gkðT Þ 6 CðkÞ for all k 2 ½0;1Þ. Now, assuming that there exists
an interior maximizer, one can use a first-order criterion to compute the potential maximizer tmax and by brutal
force computation show that gðtmaxÞ 6 CðkÞ. This proves the second part. h

The statement of the previous proposition may at first glance seem surprising and even confusing, but is not a
contradiction to evolutionary theory, since the criterion is the payoffs for the parents, which includes not only
the well being of the offspring, but also the individual costs. Nevertheless the result is very interesting, since it
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Fig. 6. Level of instantaneous effort under different scenarios.

Table 1

Cost-factor k 1/4 1/2 1 2

Benefit (d, d) 3.2789 2.9412 2.6072 1.9564
Benefit (d, s) 3.3117 2.9735 2.6387 1.9854
Benefit (s, s) 3.3599 3.0207 2.6845 2.0267

Dynamic costs (d, d) 0.2052 0.2024 0.1984 0.1854
Dynamic costs (d, s) 0.1975 0.1949 0.1912 0.1792
Static costs 0.4826 0.4756 0.4659 0.4341

J2ðd; dÞ 3.0736 2.7388 2.4088 1.7709
J2ðd; sÞ 2.8291 2.4979 2.1728 1.5513
J1ðd; sÞ 3.1142 2.7786 2.4475 1.8061
J1ðs; sÞ 2.8773 2.5450 2.2186 1.5925
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says, that the young ones with sophisticated parents do worse then the young ones with unsophisticated
parents. Fig. 6 shows the level of instantaneous efforts under different scenarios. The solid blue line displays
the level of instantaneous effort provided by a parent which follows the dynamic ESS under scenario 3, which
means that its partner also follows the dynamic ESS. The dotted black line also displays the level of instanta-
neous effort provided by a parent which follows the dynamic ESS, but this time under scenario 2, which means
that its partner follows the static Houston–Davies rule. The solid red line displays the level of instantaneous
effort provided by a parent which follows the static Houston–Davies rule. As this level is independent of the
state of the offspring’s fitness, it is the same in all three scenarios. Finally, the dashed cyan line displays the aver-
age of the solid red line and dotted black line and represents the effective level of instantaneous effort under
scenario 2. Let also consider the payoffs for the different pairs of strategy profiles, which under an evolutionary
dynamic determine which strategy thrives best in the population. Table 1 represents some key data for the dif-
ferent strategy profiles under the various pairings, including the final payoffs for different cost factors k.

Table 1 shows that in an essentially homogeneous population of individuals using the dynamic evolutionary
strategy, individuals who use the static Houston–Davies strategy cannot invade, but that on the other side, an
essentially homogeneous population of individuals using the static Houston–Davies strategy can be invaded
by individuals using the more sophisticated dynamic evolutionary strategy. Noticing that J 1ðd; sÞ ¼ J 2ðs; dÞ
and J 1ðs; sÞ ¼ J 2ðs; sÞ Table 1 above shows in fact that the dynamic evolutionary strategy is strictly dominant
against the static Houston–Davies strategy.
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8. Conclusions

While game theory has played an important part in evolutionary biology and theoretical ecology in the
past, applications of differential games are clearly under-represented in the biological context. We introduced
a first differential game model for the conflict over parental care. This model contains the classical Houston–
Davies [4] model in a very natural way and can be seen as a continuous time dynamic version of the Houston–
Davies model, which includes state dependent strategies. We solve this game for feedback Nash-equilibria by
using Hamilton–Jacobi–Bellman theory as well as the method of characteristic curves. Though our model may
seem to be rather simple, our approach is completely new to game theoretic modeling in biology. We also
show that parents cannot obtain a significant advantage by conditioning their strategies on their energy levels
in addition to the welfare of the offspring. We furthermore compare the newly obtained dynamic evolutionary
strategy with the classical static Houston–Davies strategy and discuss issues like the well being of the offspring.
We obtained the interesting result that the offspring with non-sophisticated parents, i.e. parents who use the
static Houston–Davies rule, are better off than the offspring of sophisticated parents using the dynamic evo-
lutionary strategy.
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Estimating the volume of a solid body 
 
Professor Markus Reiss, Humboldt University of Berlin  
https://www.mathematik.hu‐berlin.de/de/forschung/forschungsgebiete/stochastik/stoch‐
employees/mreiss 
 
Abstract: We are interested in estimating the volume of a solid body in \R^d based on observations 
of points uniformly distributed over the body and under minimal assumptions on the boundary like 
smoothness, convexity and r‐convexity (the so‐called rolling‐ball condition). The main object of study 
is an estimator originally proposed in http://arxiv.org/abs/1502.05510 for a slightly different 
problem. The performance of this estimator is yet to be understood for the class of r‐convex bodies, 
but there is an increasing evidence that it works optimally. In this external project, our aim is to 
provide numerical and theoretical guarantees for the estimator. 
 
This estimator can then be employed to estimate the volume of a patient's tumour. Typically we 
don't know the true shape of the tumour and have access to only some sort of measurements, often 
imprecise, like the detection of presence of the tumour in a certain region. 
 
There is an evidence that the poisson point process is a suitable mathematical model for that. It 
turns out that one the main ingredients of proving the convergence rates of the estimator is to 
understand the asymptotic bound for the expected number of vertices of the r‐convex hull and 
analyse how it depends on the curvature parameter r.  
 
Thus the project can be split into 3 steps:  
 
1. Adapt and evaluate numerically the performance of the estimator. 
 
2. Derive an asymptotic bound for the expected number of vertices of the r‐convex hull. Verify the 
bound numerically. 
 
3. Employ statistical adaptation techniques to estimate the unknown curvature parameter r. Verify 
the results numerically. 
 
A good starting point in investigating the r‐convex hull is this paper 
http://arxiv.org/pdf/1507.00065.pdf 
 



Project: Twinkling in sonar systems.
Dr P. Dobbins
Ultra Electronics Sonar Systems

Turbulence and other inhomogeneities in the water column cause fluctuations in 
propagating acoustic signals in the same way that turbulence in the interstellar 
medium causes stars to twinkle [1,2]. The amplitude fluctuations bring about signal 
fading and failure to detect targets well within the theoretical range of the system. 
Phase fluctuations, however, cause loss of directivity and angular resolution in 
receiving arrays, spreading of transmitted beams, variations in the apparent arrival 
direction of signals and fluctuations in their arrival time. Fluctuations also result in an 
occasional high peak in the signal amplitude, allowing sources or targets to be 
detected at ranges much greater than predicted by the conventional sonar equation [3].
The aim of this project will be to model the underwater medium as a random phase-
changing screen [4] and predict the detection range that might be obtained using these
occasional high peaks.
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