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Introduction

What do we mean by structure? It is common to wonder what local
structure, or lack thereof, tells us about an object. One type of local
structure we could look for in this setting is strings of numbers separated
by equal distance, known as arithmetic sequences. Motivated by this, we

may also wish to look for geometric sequences.

By arithmetic and geometric sequences we mean
sequences of the form a, a + r, a + 2r, . . . , a + kr
and a, ar, ar2, . . . , ark respectively.

Arithmetic sequences

A lot is known about this case. For example van der Waerden’s Theorem
states that if we partition N = {1, 2, . . .} into two sets then one of the
sets contains arbitrarily long arithmetic sequences. Further, Szemerédi’s
Theorem states that given a set of positive upper density this set must

contain arbitrarily long arithmetic sequences.

Figure : Diagram outlining various implications between parts of Szemerédi’s proof of
his celebrated theorem

This is, roughly speaking,
a measure of the ‘size’
of a set, defined by boot-
strapping from the proportion
of the numbers 1, 2, . . . , N
in our set.

Arithmetic-free sets An extreme case of note are those sets without
any arithmetic sequences. For example, it seems intuitively as though
the more we add to a set, the harder it is to avoid arithmetic sequences,
but is our intuition correct? The most obvious way to attempt to create
a set free of arithmetic sequences is commonly known as the greedy
algorithm. Suppose that after k steps of the algorithm we have a set,
say A = {x0, x1, . . . , xk}. This set will be free of arithmetic sequences
by construction, and the greedy algorithm simply tells us to add the least
element that doesn’t create an arithmetic sequence.

Pesky primes If we’re not so bothered about having absolutely no
arithmetic sequences, we might instead like to just forbid arithmetic
sequences of length k. It’s a curious fact that if we run the greedy
algorithm for this condition when k is prime, the set that the greedy
algorithm spits out is precisely the set of those numbers that don’t
contain a digit (k − 1) in their base k expansion! Arguably even more
curious is the fact that little is known about the structure of the set
given by the greedy algorithm when k is not prime.

Behrend’s construction The upper density of these greedy sets is 0,
whereas pushing further in this direction, Behrend gave a construction,
which was for sixty years unbeaten. Roughly speaking it uses a cunning
embedding into N and the fact that a sphere in Zd doesn’t contain any
arithmetic sequences (strictly speaking, something analogous to an
arithmetic sequence, replacing a and r from our definition with elements
of Zd).

Geometric sequences

A lot less is known about the analogous problems for geometric
sequences. To get a feel for the problem it’s instructive to see if the
results mentioned for arithmetic sequences hold when we replace
arithmetic by geometric.

van der Waerden for geometric sequences? This is a
consequence of van der Waerden’s Theorem for arithmetic sequences.
Although not immediately obvious, given a partition, if we look at the
powers of 2, then take logs to the base 2, one of the resulting sets under
the induced partition must contain an arithmetic sequence, and this
corresponds to a geometric sequence in the original setting. Since
a, a + r, a + 2r corresponds to 2a, 2a+r, 2a+2r which we can see is a
geometric sequence by writing as 2a, 2a(2r), 2a(2r)2.

. . . Yes

Szemerédi for geometric sequences? The set of

square-free numbers has density 6/π2 ≈ 0.6079 so Szemerédi’s
Theorem doesn’t carry over.

We say a number is square-free if it has no square divisors

. . . No

Geometric-free sets: Are the square-frees best?

The Fundamental Theorem of Arithmetic tells us that for each number
n ∈ N there is a unique expression of n as a product of primes. Inspired
by this correspondence and the correspondence between an arithmetic
sequence in indices and geometric sequences of powers of 2 (from van
der Waerden for geometric sequences) we may start to think instead
about which indices we allow. Notice that the square-frees are exactly
those numbers such that if we express n = 2i13i2 . . . as a product of
primes, then we allow the is to be 0 or 1. We might then ask, can we do
slightly better? If we were to take the set of numbers where the is were
restricted to being in some set A, then which set would be best? It’s
fairly clear that we could allow the is to be 0 or 1 or 3 without any
problems, and the set of such ns would contain the square frees.

. . . Not by a long shot

If not 0 and 1, which indices are best? In fact, using this
construction, the best choice of A is the so called Cantor set from earlier,
those n without a 2 in their base 3 expansion. Showing this requires we
look in more detail at how to calculate the densities of such sets, but
intuitively, since density is defined in terms of the proportion of those
n ≤ N which we include, it makes sense that we care a lot more about
allowing small numbers in A than we do about adding large numbers,
since those n divisible by pi for some large i come along relatively
infrequently. Then it’s plausible that greedy does best since greedy is

keen to get its hands on the smallest number it can at any stage.

This gives the density ζ(2)
∏∞

t=1 ζ(3
t)/ζ(2 · 3t) ≈ 0.7197

. . . the greedy set from earlier!

What about a greedy algorithm? Surprisingly, the set we just
described is the set you get if you use a greedy algorithm to construct a
set without geometric sequences.

. . . we might as well have used the greedy algorithm!

But surely we can do better? As I understand it, nobody has

beaten this example, though this one is well known.

Strictly speaking we have implicitly not restricted r to being an
integer and have allowed 9, 15, 25 as a valid geometric sequence
(with ratio 5/3). With this restriction Beiglböcka, Bergelson,
Hindman and Strauss have beaten the aforementioned.

. . . there are no known improvements

Upper bounds

In terms of density, we cannot do arbitrarily well with sets free of
geometric sequences. All bounds I’ve seen proceed by taking a large list
of disjoint geometric sequences and observing that any set free of
geometric sequences must be missing at least one element of each
sequence from the decomposition, where the best of which gives the
upper bound ≈ 0.8494.

Bounded gaps and open problems

Another open problem is whether a set with bounded gaps must contain
a geometric sequence. In fact, it is not even known whether a set with
gaps bounded by 1 must contain a geometric sequence or not. Further
the upper bounds for the arithmetic sequences problem are a long way
off the best lower bounds, which have been improved upon since
Behrend’s construction, and it is suspected that Behrend’s bound may
be the optimal density.


