
University of Cambridge

Faculty of Mathematics
Combinatorial Logic, or is it Really theLambdaCalculus? Josie Smith

Prof Martin Hyland

The Lambda Calculus

The λ calculus is a formal language consisting of a
set of variables x, y, z, etc.

Lambda terms: M,N ::= x|(MN)|(λx.M)

x is a free variable in terms such as xy and λy.xy,
but is bound in terms such as λx.xy and λxy.xy.

α-Equivalence:
Substituting bound variables for other variables
(similar to dummy variables). eg. λx.xy = λz.zy

β-Equivalence:
Evaluating a λ term, eg. (λx.xy)z = zy

η-Equivalence:
If 2 terms β-reduce to the same thing, they are
η-equivalent. eg. λx.yx = y

Rewriting of equals for equals in the lambda calculus is a
(universal) form of computation. The λ calculus is the basis
for functional programming languages, and is a logic of
equality between terms with terms closed under application
and function abstraction.

Combinatory Logic

An applicative structure (A, •) is just a set A, with
an application •. For this to be a combinatory logic,
there must exist an S and K in A such that:

Sabc = ac(bc)
Kab = a

Aim
L is an interpretation of the λ calculus, where L(n) is the set
of terms with n free variables. C, a combinatory algebra, is
an interpretation of combinatory logic. L(n − 1) and L(n)
are isomorphic, via application on x and λ-abstraction (tak-
ing a 7→ λx.ax).

L(0)→ L(1)→ L(2)→ L(3)→ ...
a 7→ a • x λx.bx← [ b

Question: For a given application •, is there the

structure of an interpretation of the λ-calculus on the

algebraic theory {C(n)}n≥0?

Answer: I� a 7→ a • z is an isomorphism.

Hence for C to be a model of L, we need isomor-
phims between

C(0)→ C(1)→ C(2)→ ...

My aim is to �nd equations between combinators
which make this true.

Finding Equations

Peter Freyd's idea: If C(0) and C(1) are isomorphic, there must be an applicative structure
(A, ∗) on C(0) which corresponds to that of C(1).

(C(0), •)

(C(1), •)

(C(0), ∗)

��
��
��
��
�1

PPPPPPPPPq

6
inj

φ

θ

a

ax

6

The arrows must indicate maps between combinatory algebras, so must behave nicely.
Hence θ(a ∗ b) = θ(a) • θ(b), where θ is application on x, so (a ∗ b)x = ax(bx) (associating
to the left). We then notice that ∗ is just S from earlier, so we write a ∗ b = Sab. This
now means that (C(0), S) is a combinatory algebra.

Now, for the diagram to be commutative, we want φ(a)x = a. Notice that φ(a) = Ka.
For K to be a nice mapping, K(ab) = K(a) ∗K(b) = S(Ka)(Kb). Thus our �rst equation,
which means that K is a map of combinatory algebras, is

K(ab) = S(Ka)(Kb)

But as (C(0), S) is a combinatory algebra just as (C(0), •) is, it must also have a "K" and
"S", and these must be the images of the K and S in (C(0), •). Hence they are KK and
KS. Checking that these act (under operation by S, naturally!) in the correct way gives
us 2 more equation:

S(S(KK)a)b = a correctness of KK
S(S(S(KS)a)b)c = S(Sac)(Sbc) correctness of KS

Finally, for θ to be an isomorphism, we need to �nd a map that is its inverse. For a ∈ C(0),
the map (C(1), •) → (C(0), S) is just a 7→ Ka, as inj is the constant injection. But for
the new free variable x, we notice the Ix = x (where I = λx.x = SKK), so we map
x 7→ I. These de�ne the map uniquely, so the composite of this inverse with θ must be the
identity. Hence a 7→ ax 7→ S(Ka)I, so our fourth equation is

S(Ka)I = a

What Next?

Hence it is these 4 equa-
tions that are necessary
(and su�cient) for C to
be a model of the λ cal-
culus. To get these same
equations with free vari-
ables instead of a, b and
c in C(0), just repeat the
above process, but start-
ing in C(3). Now you can
substitute any free vari-
able for any λ term.
Comparing our equations
with Curry's:

Our Equations

K(xy) = S(Kx)(Ky)
S(S(KK)x)y = x
S(S(S(KS)x)y)z = S(Sxz)(Syz)
S(Kx)I = x

Curry's Equations

S(S(KS)(S(KK)(S(KS)K)))(KK) = S(KK)
S(KS)(S(KK)) = S(KK)(S(S(KS)K)(K(SKK)))
S(K(S(KS)))(S(KS)(S(KS)))
= S(S(KS)(S(KK)(S(KS)(S(K(S(KS)))S))))(KS)
S(S(KS)K)(K(SKK)) = SKK

These are actually the same equations; by
�nding isomorphic equations in C(0) (and
simplifying using our 4th equation) we de-
duce Curry's equations from ours. Simi-
larly, λ-abstracting Curry's equations and
βη-reducing gives our equations.

It is an interesting question to understand
what happens if you have some equations
and not others. What happens if you have
all equations save the 4th is worth think-
ing about: the 4th is a kind of uniqueness
typical of universal properties in category
theory and that does not seem computa-
tionally essential.

It is these relationships between
the combinators that make a
combinatory algebra into a λ(βη)
calculus. However, when try-
ing to �nd similar equations to
make a combinatory algebra into
a λ(β) calculus without the η-
equivalence rule, there are a
few more. Instead of isomor-
phisms we have retracts and
these, unlike the isomorphisms,
are not uniquely determined by
the structure given, so the situa-
tion looks more subtle.

Generalising

As (C(0), S) is also a combinatory algebra with KK and KS, we
can draw a similar diagram, and repeat the process described above.

(C(0), S)

(C(1), S)

(C(0),KS)

��
��
��

��
�1

PPPPPPPPPq

6
inj

KK

θ

a

Sax

6

a

S(KK)a

PPPPPPPPq

So a 7→ S(KK)a, as the application we are now working under is S. It

is important to remember that K and S are not only a function and an

application, but also elements in C(0).

Before, we had 4 equations, plus the de�nitions of K and S. Similarly

by imposing the "niceness" of the maps in the new diagram, we can get

4 more equations, which are not included as they are long complicated,

and not particularly enlightening.

We can also map the new K and S to ones in (C(0),KS), and get even

more equations! This could go on inde�nitely. Here are recursive relations

to calculate the new K and S, and 4 equations for each level. Lower case

k and s are the "actual" terms in C(0), whereas upper case K and S are

the function and application respectively, written acting on a and b.

Level 1 k1 = K s1 = S
(C(0), S0 = •) K1 = Ka S1 = Sab

Level n kn = Sn−2kn−1kn−1 sn = Sn−2kn−1sn−1

(C(n), Sn−1) Kn = Sn−1kna Sn = Sn−1(Sn−1sna)b

Equations: Sn(Kn+1a)x = a
Kn(Sn−1ab) = Sn(Kna)(Knb)
Sn(Sn+1ab)x = Sn(Snax)(Snbx)
Sn(Kna)I = a

1


