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Why Modified Gravity?

The standard ΛCDM (Λ-Cold Dark Matter) cosmology uses a
cosmological constant to give the current acceleration of the Universe.

The energy stored in this constant is called dark energy, but the scale of
magnitude of the energy density of this dark energy has no good
explanation. Other models have therefore been proposed instead in order
to explain the acceleration of the Universe.

Scalar field models

The Einstein equations of the ΛCDM cosmology can be derived from
an action: ∫
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where g is the determinant if the metric, MPl is the Planck mass and R
is the Riemann trace. When a scalar field is included, the action
becomes:
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Here φ is the scalar field, V (φ) is the potential and A2(φ) gives the
coupling to matter, as Sm is the matter action.
This type of model is determined by the specific choice of V (φ) and
A(φ). The scalar field gives an effective potential

Veff = V + (A− 1)ρ

where ρ is the matter density. The field seeks to minimise this effective
potential.

Scalar fields cause a fifth force to act between objects when the field is
couples to ordinary matter, which would have observable consequences.

Screening mechanisms

The Chameleon model: the field in dense environments is on the left,
with the minimum of the field close to zero, and in less dense
environments on the right.

For the model to be viable, it must not violate any of the results of
observations we make- the fifth force caused by the scalar field must be
too small to be noticed where we can make measurements.

Screening Mechanisms cont’d
Several models depend on the environment to achieve this. For the

Chameleon model [1], the field is strongly coupled to matter, and the
mass of the field is much larger in the laboratory so it will have little
effect in comparison to it being almost massless on cosmological scales.

Another type of model is the environmentally dependent dilaton [2],
where the coupling to matter β = d lnA

dt depends on the field, and turns
off in high density environments.This is an example of the
Damour-Polyakov mechanism which comes from string theory.

Particular model

The particular model is not environmentally dependent, so the screening
mechanism works in a different way to above. It uses:
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There are several ways to check the model is a possibility.

Testing- Cosmology

The model must be experimentally viable. The first way check is to
examine the cosmology of the model. The FRW metric for a spatially
homogeneous isotropic universe uses a scale factor for the universe a(t).
The modified Einstein equations derived from the action can be solved
to find the Hubble constant H = ȧ

a.

The above figure shows H(t) as a function of time for different values of
α. The value of H today is known, so the equations for the model can
be solved in time, starting in the past, to find the value of H(t) today
and compare it to this value.

The model depends on several parameters: α, λ and the mass of the
scalar field, m. Solving the equations for the model numerically and then
comparing to the known values gives the possible values of these
parameters so that the values match.

Solar System Tests
There are several solar system tests which give bounds on the

parameters:
The Cassini experiment, which measures the frequency shift of photons
(from the curvature of space-time) near the sun, gives one bound of

β < 10−5

Lunar Laser Ranging, which imposes limits on any violation of the
equivalence principle, also provides more constraints on the parameters.

Spherical objects

The spherical profile of the scalar field at a fixed time time shows how
the field changes with distance from a spherical object (such as the
Earth or Sun). It useful to see how the field drops off away from the
object. The graph below shows the field profile around such a spherically
symmetric object, assuming the background is perturbed Minkowski
space.

The figure above shows how the field drops off around a spherically
symmetric object, tending towards the background value of the field.

Conclusions
It is possible to find values of the parameters that satisfy these tests,

and there are then more features of the model to examine, such as the
behaviour near black holes.
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