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I. Research at the CSMLab

Research at the Computational Structural Mechanics Lab (CSMLab) is
concerned with the computational modelling and analysis of light-weight
structures relevant to applications in structural engineering, aerospace
and marine engineering. Specific strengths include:

• advanced discretization methods for computational analysis of
structural components such as membranes and shell

•modelling and analysis of large-scale structural membranes, such as
parachutes and inflatable decelerators for outer-space applications

• computational analysis and simulation of fluid-structure interaction
with applications to micro-air-vehicle design and insect flight

Figure 1 : Computational simulation of
supersonic disk-gap-band parachute

Figure 2 : Photo Credit: Animal Flight
Group, Dept. of Zoology, Oxford University

It is often the case that problems of interest in structural mechanics are
associated with inherently complex dynamics and geometry. Such
problems invariably demand advanced scientific computing and numerical
analysis. For example, attempts to develop models of fluid-structure
interaction in insect flight are complicated by the presence of the large
deformations exhibited by biological wings during flapping motion, as
well as the complex geometry of biological surfaces. Models that
incorporate such complexities are needed in order to produce high-fidelity
predictions for aerodynamic and structural design parameters. Specific
computational tools used in this context include stabilized and immersed
finite element methods.

II. The Finite Element Method

The finite element method (FEM) is a numerical analysis technique that
is used to find approximate solutions to boundary-value problems. It
provides the dominant discretization approach in structural mechanics
and is used in the numerical modelling of physical systems in a wide
range of engineering problems. The method is based on the variational

formulation of the mathematical model and involves the subdivision of
the geometry into disjoint components of simple geometry called finite
elements. The response of each element is expressed as a finite number
of degrees of freedom at a set of nodal points.

Figure 3 : Geometry of interest Figure 4 : Mesh-generation

Recall that the weak formulation of the equation Au = f , where V is a
Banach space with dual space V ′, u ∈ V , A : V → V ′, f ∈ V ′ is

B(u, v) = f (v) ∀v ∈ V,

where B is the bilinear form B(u, v) = A(u)(v). The key steps involved
in the FEM are:

• derivation of the weak formulation of the governing equations.

•mesh-generation

• interpolation of displacements and the test function on each element
using shape functions and corresponding nodal values

•On each element, displacements u and the test function v are
interpolated using shape functions NK and nodal values uK

u =

NP∑
K=1

NKuK v =

NP∑
K=1

NKvK,

where NP is the number of nodes per element.

•The finite element equations are obtained by introducing these
interpolation equations into the weak formulation. The solution is then
found using numerical linear algebra.

Figure 5 : Insect wing Figure 6 : FE mesh of wing

III. Beams, Shells and Membranes

Consider a beam of thickness t with domain

Ω = {(x1, x2, x3) ∈ R : x1 ∈ [0, L], x2 ∈ [−b/2, b/2], x3 ∈ [−t/2, /t/2]},

whose deflections take place in the x1x3 plane, so that the midline is
initially given by x3 = 0. The Euler-Bernoulli beam model takes as its
key kinematic assumption that the material points on the normal to the
midline remain on the normal during the deformation. This assumption
determines the axial displacement of the material points across the
thickness. The Timoshenko beam model refines the Euler-Bernoulli
kinematic assumpton to allow for the possibility of shear deformations.
The Kirchhoff-Love theory of plates and shells is an extension of
Euler-Bernoulli theory to these structures and is based on the
assumption that material fibres normal to the mid-surface remain normal
under deformation.

Figure 7 : Deformation of shell mid-surface in Kirchoff-Love theory

•Reference configuration: ΦΦΦ = XXX + θ3NNN θ3 ∈ [−t/2, t/2]

•Deformed configuration: φφφ = XXX + θ3nnn θ3 ∈ [−t/2, t/2]

•Deformation gradient: F = (∂φφφ/∂ΦΦΦ)ij
•Green-Lagrange Strain:

E =
1

2
(F TF − I) = (εαβ + θ3καβ)∂θα/∂ΦΦΦ⊗ ∂θβ/∂ΦΦΦ, α, β = 1, 2,

where the membrane strain ε and bending strain κ are given by

εαβ =
1

2
(∂xxx/∂θα · ∂xxx/∂θβ − ∂XXX/∂θα · ∂XXX/∂θβ)

καβ = − ∂2xxx

∂θα∂θβ
· nnn +

∂2XXX

∂θα∂θβ
·NNN.

The membrane strain measures the change in surface metric, whereas the
bending strain provides a measure for the change in surface curvature.


