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Symmetry breaking in animals

Initially, many animals – including mice, zebrafish and hu-
mans – appear bilaterally symmetric. Whilst front and back,
top and bottom are clearly defined, there is little difference
between the left- and right-hand sides. On closer inspec-
tion, however, we see that organs are arranged systematically
in a non-symmetric way, for example the heart lies primarily
on the left-hand side. The development of these axes early
in development is an interesting question of Fluid Dynamics.
The left-right axes are the last to develop, their development
depending on a directional fluid flow in some organising struc-
ture.

In zebrafish (right), a tiny fish commonly looked at by devel-
opmental biologists, the structure controlling this symmetry
breaking is called Kupffers Vesicle (KV), transient, spher-
ical, fluid-filled organ. In zebrafish, KV is generated from a
cluster of 20-30 dorsal forerunner cells which combine to cre-
ate a ciliated epithelium. These cilia are motile and drive
an anticlockwise fluid-flow in the plane normal to the dorsal-
ventral axes.

Our question is how we model these cilia – tiny hair like struc-
tures on the surface of the cells – and further how we can
model the fluid flow induced in three dimensions. Compu-
tationally, full modelling is difficult, so a variety of simpli-
fied models were compared to deduce whether computational
efficiency could be obtained without sacrificing quantitative
accuracy. Comparing the flow induced by the model of cilia
within a spherical geometry with the known experimental re-
sult allows us to deduce results about the direction of cilia tilt,
and explore the flow inside KV away from the (experimentally
studied) mid-plane, illustrated below.

Mathematical Modelling

The full equations governing fluid flow around cilia are known. Due to the small size of the
relevant geometries and speeds, the flow is described by the Stokes equations, the zero-Reynolds
number limit of the Navier-Stokes equations. The fundamental solution to these equations (in all of
space) is known, and called the Stokeslet. Differentiating this solution leads to other fundamental
solutions, which can be combined to give solutions in more complicated geometries, for example
the flow generated by a point force near an infinite sheet, on which the flow vanishes.

Unfortunately, for even moderately complicated geometries solutions to the Stokes equations are
not known. However, powerful numerical techniques have been constructed which can cope with
these. Initially, we modelled a cilium by a string of ’regularised’ Stokeslets: instead of a line of
point forces (a multiple of a δ-“function”), the forces were slightly de-localised (instead being a
multiple of a local but finite radial “blob” function which integrated to 1, tending towards the
δ-function as the localisation parameter tended to 0). By fixing the motion of the cilium (rotating
about a tilted axis) and insisting the generated fluid flow matched the cilium velocity at any point
along it, we could in turn compute the flow field throughout the domain.

This is fine for infinite and half-infinite domains, where analytic expressions for the singularities are
known. However, it is a numerically taxing routine. We deduced that when time-averaged, the fluid
flow not far above the cilium corresponds to that of a point torque. By applying the Boundary
Integral Method for Stokes flow – essentially replacing integration within some domain with
integration on its boundary – we can utilise this point torque model in more complicated domains,
in our case a simple sphere. Having successfully reduced the complicated, fully-resolved model of
a cilium to a single point singularity, we can efficiently compute the (three-dimensional) flow in
KV.

Results

There is some disagreement in the biological community about
which way the cilia in KV tilt – do they tilt towards the rear
(posterior side, p) or top roof (dorsal side, d) of KV? Further,
the cilia are not evenly distributed around the cell. Taking
these various possibly tilts into account allowed us to con-
struct a variety of different flows in KV. Shown below are
some streamlines induced by dorsal tilted cilia at the positions
shown by the black shapes – it corresponding in magnitude
and qualitative behaviour very closely to that experimentally
observed.

Further, this model allows us to observe the individual contri-
bution from each cilium. Careful analysis revealed that almost
all the cilia, those on the ventral roof (the bottom of KV, v)
aside, contributed to the experimentally-observed anticlock-
wise flow. Indeed, one can see from this individual flow that
the distribution of cilia is such as to maximise this anticlock-
wise flow, which holds if we have dorsal tilt. Thus, we deter-
mined two things – firstly that the cilia are most likely tilted
dorsally, and secondly “why” the non-uniform distribution of
cilia is as it is.

Potential Further Research

It was noted that for a curved cilium, there was an additional
“corkscrew”-like effect, in which the fluid would be expelled
from the cilium (in a time-averaged sense). This can be mod-
elled by a combination of Stokeslet (point-force) and rotlet
(point-torque) singularities. What is the effect on fluid flow
in KV?


